
Stateflow®

API

R2021b



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Stateflow® API
© COPYRIGHT 2004–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


Revision History
June 2004 Online only Revised for Version 6.0 (Release 14)
October 2004 Online only Revised for Version 6.1 (Release 14SP1)
March 2005 Online only Revised for Version 6.2 (Release 14SP2)
September 2005 Online only Revised for Version 6.3 (Release 14SP3)
March 2006 Online only Revised for Version 6.4 (Release 2006a)
September 2006 Online only Revised for Version 6.5 (Release 2006b)
September 2007 Online only Rereleased for Version 7.0 (Release 2007b)
March 2008 Online only Revised for Version 7.1 (Release 2008a)
October 2008 Online only Revised for Version 7.2 (Release 2008b)
March 2009 Online only Revised for Version 7.3 (Release 2009a)
September 2009 Online only Revised for Version 7.4 (Release 2009b)
March 2010 Online only Revised for Version 7.5 (Release 2010a)
September 2010 Online only Revised for Version 7.6 (Release 2010b)
April 2011 Online only Revised for Version 7.7 (Release 2011a)
September 2011 Online only Revised for Version 7.8 (Release 2011b)
March 2012 Online only Revised for Version 7.9 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
October 2015 Online only Rereleased for Version 8.5.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 8.7 (Release 2016a)
September 2016 Online only Revised for Version 8.8 (Release 2016b)
March 2017 Online only Revised for Version 8.9 (Release 2017a)
September 2017 Online only Revised for Version 9.0 (Release 2017b)
March 2018 Online only Revised for Version 9.1 (Release 2018a)
September 2018 Online only Revised for Version 9.2 (Release 2018b)
March 2019 Online only Revised for Version 10.0 (Release 2019a)
September 2019 Online only Revised for Version 10.1 (Release 2019b)
March 2020 Online only Revised for Version 10.2 (Release 2020a)
September 2020 Online only Revised for Version 10.3 (Release 2020b)
March 2021 Online only Revised for Version 10.4 (Release 2021a)
September 2021 Online only Revised for Version 10.5 (Release 2021b)





Using the Stateflow API
1

Overview of the Stateflow API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Hierarchy of Stateflow API Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Access Stateflow API Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Modify Properties of API Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Call API Object Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

Access Objects in Your Stateflow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Find Objects in a Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Navigate the Stateflow Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Retrieve Recently Selected Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9

Modify Properties and Call Functions of Stateflow Objects . . . . . . . . . . . 1-11
Call Object Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11
Access Properties by Using Dot Notation . . . . . . . . . . . . . . . . . . . . . . . . 1-11
Get and Set the Values of Multiple Properties . . . . . . . . . . . . . . . . . . . . . 1-12

Create and Delete Stateflow Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
Create Stateflow Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
Delete Stateflow Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14

Specify Labels in States and Transitions Programmatically . . . . . . . . . . 1-16
Enter Labels on Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
Enter Multiline Labels in States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17

Create Charts by Using the Stateflow API . . . . . . . . . . . . . . . . . . . . . . . . . 1-19

Create Charts by Using a MATLAB Script . . . . . . . . . . . . . . . . . . . . . . . . . 1-24

v

Contents



API Object Reference
2

API Object Function Reference
3

API Property Reference
4

List of Stateflow API Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Active State Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
C Action Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Chart Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Data Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
Discrete and Continuous-Time Semantics . . . . . . . . . . . . . . . . . . . . . . . . 4-16
Exported Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17
Graphical Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17
Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
Integer and Fixed-Point Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32
Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34
Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-36
Signal Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37
State Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38
Super Step Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38

vi Contents



Using the Stateflow API

• “Overview of the Stateflow API” on page 1-2
• “Access Objects in Your Stateflow Chart” on page 1-6
• “Modify Properties and Call Functions of Stateflow Objects” on page 1-11
• “Create and Delete Stateflow Objects” on page 1-13
• “Specify Labels in States and Transitions Programmatically” on page 1-16
• “Create Charts by Using the Stateflow API” on page 1-19
• “Create Charts by Using a MATLAB Script” on page 1-24

1



Overview of the Stateflow API
In this section...
“Hierarchy of Stateflow API Objects” on page 1-2
“Access Stateflow API Objects” on page 1-4
“Modify Properties of API Objects” on page 1-4
“Call API Object Functions” on page 1-5

The Stateflow application programming interface (API) allows you to create or change Stateflow
charts from the MATLAB Command Window. By placing Stateflow API commands in a MATLAB
function or script, you can:

• Automate your chart modification operations by executing several editing steps in a single
command.

• Eliminate repetitive chart creation steps by producing a "base" Stateflow chart that you can reuse
as a template for your applications.

• Produce a specialized report of your model.

The Stateflow API consists of objects that represent the graphical and nongraphical objects of a
Stateflow chart. For example, the API objects Stateflow.State and Stateflow.Transition
represent states and transitions in a Stateflow chart. When you modify the properties of an API object
or call one of its object functions, you affect the corresponding object in the Stateflow chart. When
you use the Stateflow Editor to perform an operation on an object in the chart, you affect the
corresponding API object.

Note You cannot undo any operation in the Stateflow Editor that you perform by using the Stateflow
API. If you perform an editing operation through the API, the Undo and Redo buttons in the quick
access toolbar are disabled.

Hierarchy of Stateflow API Objects
Stateflow API objects are organized in a containment hierarchy. For example, if state A contains state
B in a Stateflow chart, then the API object for state A contains the API object for state B. The
Stateflow API hierarchy follows the same rules of containment as the Stateflow object hierarchy. For
example, charts can contain states, but states cannot contain charts. For more information, see
“Overview of Stateflow Objects”.

This diagram shows the hierarchy of objects in the Stateflow API.

1 Using the Stateflow API

1-2



The hierarchy consists of four levels of containment:

• Root — The Simulink.Root object is the parent of all Stateflow API objects. It is a placeholder
at the top of the Stateflow API hierarchy that distinguishes Stateflow objects from other objects in
a Simulink® model. You automatically create the Simulink.Root object when you add a
Stateflow chart, a State Transition Table block, a Truth Table block, or a MATLAB Function block
to a Simulink model, or when you load a model that contains one of these blocks.

• Machine — From a Stateflow perspective, Stateflow.Machine objects are equivalent to
Simulink models. A Stateflow.Machine object contains objects that represent the Stateflow
charts, State Transition Table blocks, Truth Table blocks, and MATLAB Function blocks in a model.

• Chart — Stateflow.Chart, Stateflow.StateTransitionTableChart,
Stateflow.TruthTableChart, and Stateflow.EMChart objects represent Stateflow charts,
State Transition Table blocks, Truth Table blocks, and MATLAB Function blocks, respectively.
Objects in this level of the hierarchy can contain objects that represent states, functions, boxes,
data, events, messages, transitions, junctions, entry and exit ports, and annotations.

 Overview of the Stateflow API

1-3



• States, Functions, and Boxes — This level of the hierarchy includes Stateflow.State,
Stateflow.Function, and Stateflow.Box objects that represent states, functions, and boxes,
respectively. These objects can contain other objects that represent states, functions, boxes, data,
events, messages, transitions, junctions, entry and exit ports, and annotations. Levels of nesting
can continue indefinitely.

The hierarchy diagram shows two object types that exist outside of the containment hierarchy:

• Editor — Stateflow.Editor objects provide access to the graphical aspects of charts and state
transition tables. For each Stateflow.Chart or Stateflow.StateTransitionTableChart
object, there is a Stateflow.Editor object that you can use to control the position, size, and
magnification level of the Stateflow Editor. For more information, see “Zoom in on Stateflow
Chart” on page 2-59, “Zoom out on Stateflow Chart” on page 2-60, and “Set Zoom Factor” on
page 2-60.

• Clipboard — The Stateflow.Clipboard object has two functions, copy and pasteTo, that use
the clipboard as a staging area to implement copy-and-paste functionality in the Stateflow API. For
more information, see “Copy and Paste by Grouping” on page 2-24 and “Copy and Paste Array of
Objects” on page 2-25.

Access Stateflow API Objects
To use the Stateflow API, you begin by accessing the Simulink.Root object, which is the parent of
all objects in the Stateflow API. You use the Simulink.Root object to access the other API objects in
your model. For example:

1 Create a Simulink model with an empty Stateflow chart by calling the function sfnew.

sfnew
2 Use the function sfroot to access the Simulink.Root object.

rt = sfroot;
3 Call the find function to access the Stateflow.Chart object that corresponds to the chart in

your model.

ch = find(rt,'-isa','Stateflow.Chart');
4 Call the Stateflow.State function to add a state to the chart. This function returns an

Stateflow.State object that corresponds to the new state.

st = Stateflow.State(ch);
5 Display the new state in the Stateflow Editor.

view(st)

For more information, see “Access Objects in Your Stateflow Chart” on page 1-6 and “Create Charts
by Using the Stateflow API” on page 1-19.

Modify Properties of API Objects
API objects have properties that correspond to the values you set in the Stateflow Editor. For
example, to use the editor to change the position of a state, you click and drag the state. With the
Stateflow API, you change the position of a state by modifying the Position property of the
corresponding Stateflow.State object:

1 Using the Stateflow API

1-4



st.Position = [10 20 100 80];

For more information, see “Modify Properties and Call Functions of Stateflow Objects” on page 1-11.

Call API Object Functions
API objects have functions that correspond to actions in the Stateflow Editor. For example, to use the
editor to open the Properties dialog box for a transition, you right-click the transition and select
Properties. With the Stateflow API, you open this dialog box by calling the dialog function of the
corresponding Stateflow.Transition object:

dialog(tr);

For more information, see “Modify Properties and Call Functions of Stateflow Objects” on page 1-11.

See Also
Functions
find | dialog | sfnew | sfroot | view

Objects
Stateflow.Box | Stateflow.Chart | Stateflow.Clipboard | Stateflow.Editor |
Stateflow.EMChart | Stateflow.Function | Stateflow.Machine | Stateflow.State |
Stateflow.StateTransitionTableChart | Stateflow.Transition |
Stateflow.TruthTableChart

More About
• “Create Charts by Using the Stateflow API” on page 1-19
• “Create Charts by Using a MATLAB Script” on page 1-24
• “Access Objects in Your Stateflow Chart” on page 1-6
• “Modify Properties and Call Functions of Stateflow Objects” on page 1-11

 Overview of the Stateflow API

1-5



Access Objects in Your Stateflow Chart
The objects in the Stateflow API represent the graphical and nongraphical objects of a Stateflow
chart. For example, the API objects Stateflow.State and Stateflow.Transition represent
states and transitions in a Stateflow chart. For more information, see “Overview of the Stateflow API”
on page 1-2.

Find Objects in a Chart
With the find function, you can locate an API object by specifying search criteria. You can combine
criteria such as:

• The type of object
• The name of a property or function
• A property name and value

For example, this command searches the Simulink.Root object and returns every
Stateflow.State object with the name 'On':

onState = find(sfroot,'-isa','Stateflow.State','Name','On')

If more than one object meets the search criteria, find returns an array of qualifying objects. For
example, if more than one chart is open, this command returns an array of Stateflow.Chart
objects:

chartArray = find(sfroot,'-isa','Stateflow.Chart')

Find Objects at Specific Levels of Containment

By default, the find function finds objects at all depths of containment within an object. For example,
suppose that ch is a Stateflow.Chart object that corresponds to this chart. The chart contains a
parent state A with two child states, A1 and A2. For more information on this example, see “Create
Charts by Using a MATLAB Script” on page 1-24.

Calling the find function to find all the states in this chart returns an array with three
Stateflow.State objects:

states = find(ch,'-isa','Stateflow.State');
get(states,'Name')

1 Using the Stateflow API

1-6



ans =

  3×1 cell array

    {'A'}
    {'A1'}
    {'A2'}

To limit the maximum containment depth of a search, use the '-depth' argument as part of your
search criteria. For example, to find the only Stateflow.State object at the first level of
containment in ch, enter:

sA = find(ch,'-isa','Stateflow.State','-depth',1);
sA.Name

ans =

    'A'

Similarly, you can call the find function to search for states in the first level of containment in the
Stateflow.State object sA. In this case, the search includes the zeroth level of containment, which
is the searched object itself:

states = find(sA,'-isa','Stateflow.State','-depth',1);
get(states,'Name')

ans =

  3×1 cell array

    {'A'}
    {'A1'}
    {'A2'}

To exclude state A from the search results, call the MATLAB function setdiff:

childStates = setdiff(states,sA);
get(childStates,'Name')

ans =

  2×1 cell array

    {'A1'}
    {'A2'}

Navigate the Stateflow Hierarchy
After you access an API object, you can use the getChildren and getParent functions to navigate
through the Stateflow hierarchy and identify the children that the object contains or the parent that
contains the object.

Find Child Objects

To find the children of an API object, call the getChildren function. For instance, suppose that ch is
the Stateflow.Chart object that corresponds to the chart in the previous example. Calling the
getChildren function on ch returns an array that contains a Stateflow.State object and a
Stateflow.Transition object.

 Access Objects in Your Stateflow Chart

1-7



children = getChildren(ch);
arrayfun(@class,children,UniformOutput=false)

ans =

  2×1 cell array

    {'Stateflow.State'     }
    {'Stateflow.Transition'}

The first element in the array is a Stateflow.State object that corresponds to state A.

state = children(1);
state.Name

ans =

    'A'

The second element in the array is a Stateflow.Transition object that corresponds to the default
transition into state A.

children(2).Source

ans =

     []

children(2).Destination.Name

ans =

    'A'

Similarly, calling the getChildren function on the state returns an array that contains two
Stateflow.State objects and two Stateflow.Transition objects.

grandchildren = getChildren(state);
arrayfun(@class,grandchildren,UniformOutput=false)

ans =

  4×1 cell array

    {'Stateflow.State'     }
    {'Stateflow.State'     }
    {'Stateflow.Transition'}
    {'Stateflow.Transition'}

The first and second elements in this array are Stateflow.State objects that correspond to the
states A1 and A2.

grandchildren(1).Name

ans =

    'A1'

grandchildren(2).Name

1 Using the Stateflow API

1-8



ans =

    'A2'

The third and fourth elements in grandchildren are Stateflow.Transition objects that
correspond to the transitions into states A1 and between state A1 and A2, respectively.

grandchildren(3).Source

ans =

     []

grandchildren(3).Destination.Name

ans =

    'A1'

grandchildren(4).Source.Name

ans =

    'A1'

grandchildren(4).Destination.Name

ans =

    'A2'

Find Parent Object

To find the parent of an API object, call the getParent function. For instance, suppose that sA1 is
the Stateflow.State object that corresponds to state A1 in the previous example. Calling the
getParent function on sA1 returns the Stateflow.State object that corresponds to state A:

parent = getParent(sA1);
parent.Name

ans =

    'A'

Similarly, calling the getParent function on parent returns the Stateflow.Chart object that
corresponds to the chart:

grandparent = getParent(parent);
grandparent.Name

ans =

    'Chart'

Retrieve Recently Selected Objects
You can retrieve the most recently selected objects in a chart by calling the sfgco function. This
function returns a single object or an array of objects, depending on your selection.

 Access Objects in Your Stateflow Chart

1-9



For instance, suppose that you select the transition from state A1 to state A2 in the previous example.
Calling sfgco returns the corresponding Stateflow.Transition object:

tr = sfgco;
str = ['Transition from ' tr.Source.Name ' to ' tr.Destination.Name]

str =

    'Transition from A1 to A2'

Similarly, if you simultaneously select the three states in the chart, calling sfgco returns an array of
Stateflow.State objects.

states = sfgco;
get(states,'Name')

ans =

  3×1 cell array

    {'A'}
    {'A1'}
    {'A2'}

Note When you use sfgco to access multiple objects, the order of the objects in the array depends
on the order in which you select the objects.

See Also
Functions
find | getChildren | getParent | setdiff | sfgco | arrayfun | class

Objects
Stateflow.Chart | Stateflow.State | Stateflow.Transition

More About
• “Overview of the Stateflow API” on page 1-2
• “Modify Properties and Call Functions of Stateflow Objects” on page 1-11
• “Create and Delete Stateflow Objects” on page 1-13
• “Create Charts by Using the Stateflow API” on page 1-19

1 Using the Stateflow API

1-10



Modify Properties and Call Functions of Stateflow Objects
In this section...
“Call Object Functions” on page 1-11
“Access Properties by Using Dot Notation” on page 1-11
“Get and Set the Values of Multiple Properties” on page 1-12

Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor.
For example, to use the editor to change the position of a state, you click and drag the state. With the
Stateflow API, you change the position of a state by modifying the Position property of the
corresponding Stateflow.State object:

st.Position = [10 20 100 80];

Additionally, object functions provide services that correspond to actions in the Stateflow Editor. For
example, to use the editor to open the Properties dialog box for a transition, you right-click the
transition and select Properties. With the Stateflow API, you open this dialog box by calling the
dialog function of the corresponding Stateflow.Transition object:

dialog(tr);

Call Object Functions
To call a function of an API object, use standard function-call notation. For example, to open the Chart
properties dialog box, call the dialog function of the corresponding Stateflow.Chart object ch:

dialog(ch)

Access Properties by Using Dot Notation
To access a property of an API object, use dot notation. For example, to see the value of the
StateMachineType property for the Stateflow.Chart object ch, enter:

ch.StateMachineType

Similarly, to change the action language of the chart, modify its ActionLanguage property:

ch.ActionLanguage = 'MATLAB'

To access the subproperties of an API property, you can nest multiple property names in a single
expression that uses dot notation. For example, you can set an entry breakpoint on a chart by
changing the subproperty Debug.Breakpoints.OnEntry of the corresponding Stateflow.Chart
object:

ch.Debug.Breakpoints.OnEntry = true;

When a property or function returns another API object, you can also access the properties and
functions for the second object by using nested dot notation. For example, the Machine property of a
Stateflow.Chart returns the Stateflow.Machine object that contains the corresponding chart.
To access the Name property of this Stateflow.Machine object, enter the expression:

machineName = ch.Machine.Name;

 Modify Properties and Call Functions of Stateflow Objects

1-11



Similarly, the defaultTransitions function returns an array of Stateflow.Transition objects
that correspond to the default transitions in the chart. If the chart contains only one default
transition, you can retrieve its label by entering:

label = defaultTransitions(ch).LabelString;

If the chart contains more than one default transition, you must first store the array and then use an
array index to retrieve each label:

transitions = defaultTransitions(ch);
label1 = transitions(1).LabelString;
label2 = transitions(2).LabelString;

Get and Set the Values of Multiple Properties
You can access multiple properties of an API object in a single command by calling the get function.
For example, to obtain the name and description for the Stateflow.Chart object ch, enter:

chartInfo = get(ch,{'Name','Description'});

You can also use the get to access properties of multiple API objects. For example, this command
returns a cell array that contains the names and descriptions of the Stateflow.Chart objects in the
array chartArray:

chartInfo = get(chartArray,{'Name','Description'});

Similarly, you can change the value of multiple properties by calling the set function. For example, to
change the name and description of the Stateflow.Chart object ch, enter:

set(ch,{'Name','Description'},{'Rectifier','Half-wave rectifier.'})

To set the names and descriptions of the Stateflow.Chart objects in the array chartArray, enter:

set(chartArray,{'Name','Description'},chartInfo);

In this command, chartInfo must be an N-by-2 cell array, where N equals the number of charts in
chartArray. The first column in chartInfo contains the new chart names, and the second column
contains the new descriptions.

See Also
Functions
defaultTransitions | dialog | fitToView

Objects
Stateflow.Chart | Stateflow.State | Stateflow.Transition

More About
• “Overview of the Stateflow API” on page 1-2
• “List of Stateflow API Properties” on page 4-2

1 Using the Stateflow API

1-12



Create and Delete Stateflow Objects
The objects in the Stateflow API represent the graphical and nongraphical objects of a Stateflow
chart. For example, the API objects Stateflow.State and Stateflow.Transition represent
states and transitions in a Stateflow chart. For more information, see “Overview of the Stateflow API”
on page 1-2.

Create Stateflow Objects
Stateflow API objects are organized in the containment hierarchy described in “Hierarchy of
Stateflow API Objects” on page 1-2. To create a Stateflow object as the child of a parent object, you
begin by accessing the parent object. Then use the parent object as the input argument to a function
that creates th child object. For example, to add a new Stateflow.State object in a
Stateflow.Chart object, follow these steps:

1 Access the parent object ch as described in “Access Objects in Your Stateflow Chart” on page 1-6.
2 Call the Stateflow.State function using the parent object ch as an argument.

st = Stateflow.State(ch);
3 Display the new state in the Stateflow Editor by calling the view function. Use the

Stateflow.State object as the argument to the function.

view(st)
4 Make changes to the state by modifying the properties of the Stateflow.State object. For

example, you can set the name and position of the state by modifying the Name and Position
properties. To set the Position property, specify the new position as a four-element vector in
which the first two values are the (x,y) coordinates of the upper-left corner of the state and the
last two values are the width and height of the state.

st.Name = 'A';
st.Position = [30 30 90 60];

You can also connect the new state to other states or junctions in your chart by creating a
Stateflow.Transition object and setting its Source or Destination properties to st.

For an example of how to add states, transitions, and data objects to a chart, see “Create Charts by
Using the Stateflow API” on page 1-19.

Graphical Object Containment

When you create a graphical object such as a state, function, box, junction, or annotation, it appears
in the upper-left corner of its parent object. You can move the graphical object to a different location
by modifying its Position property, as explained in the previous example.

When you create a transition, it appears in the upper-left corner of the chart or subchart where you
can view the parent object. You can move the transition to a different location by setting its source
and destination or by modifying its SourceEndPoint, MidPoint, and DestinationEndPoint
properties.

A graphical object must be located inside the boundary of its parent. Repositioning a graphical object
can change its parent or result in an undefined parent error. You can check for this condition by
examining the value of the BadIntersection property of an object. This property is true if the

 Create and Delete Stateflow Objects

1-13



edges of the graphical object overlap with another graphical object. Set the position and size of
objects so that they are separate from other objects.

You cannot move an object in a subcharted state, box, or graphical function to a different level of the
chart hierarchy by changing its position. Instead, copy and paste the object from one parent object to
another. Then delete the original object. For more information, see “Copy and Paste by Grouping” on
page 2-24 and “Copy and Paste Array of Objects” on page 2-25.

Nongraphical Object Containment

When you create nongraphical objects such as data, events, or messages, they appear in the Model
Explorer and in the Symbols Pane at the hierarchical level of their parent object. You can also see the
location of the parent object by inspecting the Path property of an object.

You cannot change the parent of a nongraphical object programmatically. Instead, use the Model
Explorer. For more information, see “Use the Model Explorer with Stateflow Objects”.

Delete Stateflow Objects
You can delete most objects in a Stateflow chart by calling the function delete. For example, to
delete a Stateflow.State object st, enter:

delete(st);

After you delete the state, the variable st still exists in the MATLAB workspace, but it is no longer
associated with the state.

Note You cannot use the delete function to delete objects of these types:

• Simulink.Root
• Stateflow.Machine
• Stateflow.Chart
• Stateflow.EMChart
• Stateflow.StateTransitionTableChart
• Stateflow.TruthTableChart
• Stateflow.Clipboard
• Stateflow.Editor

See Also
Functions
delete | view

Objects
Stateflow.Chart | Stateflow.State | Stateflow.Transition

1 Using the Stateflow API

1-14



More About
• “Overview of the Stateflow API” on page 1-2
• “Access Objects in Your Stateflow Chart” on page 1-6
• “Create Charts by Using the Stateflow API” on page 1-19

 Create and Delete Stateflow Objects

1-15



Specify Labels in States and Transitions Programmatically
When using the Stateflow API, specify the labels of states and transitions by assigning a character
vector to the LabelString property.

To extract parts of the state or transition label, use the properties of the Stateflow.State and
Stateflow.Transition objects listed in this table.

API Object Property Description
Stateflow.S
tate

DuringAction Text in the during action in this state. This property is not
supported in Moore charts.

EntryAction Text in the entry action in this state. This property is not
supported in Moore charts.

ExitAction Text in the exit action in this state. This property is not
supported in Moore charts.

MooreAction Text in the action in this state. This property is supported only
in Moore charts. For more information, see “Design Rules for
Moore Charts”.

Name Name of this state.
OnAction Text in the on actions in this state, parsed as a cell array of

this form:

{'trigger1','action1',...,'triggerN','actionN'}

This property is not supported in Moore charts.
Stateflow.T
ransition

Condition Text in the condition on this transition.
ConditionAction Text in the condition action on this transition.
TransitionAction Text in the transition action on this transition.
Trigger Text in the trigger on this transition.

With the exception of Name, all of these properties are read-only. For more information on the syntax
for state and transition labels, see “State Labels” and “Transition Labels”.

Enter Labels on Transitions
Suppose that tr is the Stateflow.Transition object that corresponds to a transition. You can
assign a label that specifies a trigger, condition, and condition action on this transition by entering:

tr.LabelString = 'trigger[guard]{action();}';

To extract the trigger, condition, and condition action specified by the transition label, enter:

1 Using the Stateflow API

1-16



trigger = tr.Trigger

trigger =

    'trigger'

cond = tr.Condition

cond =

    'guard'

action = tr.ConditionAction

action =

    'action();'

Enter Multiline Labels in States
There are two equivalent ways to enter multiline labels for states and transitions. For example,
Suppose that sA is a Stateflow.State object that corresponds to a state. To enter a multiline label
with entry and during actions, you can:

• Call the MATLAB function sprintf and use the escape sequence \n to insert newline characters:

str = sprintf('A\nen: action1();\ndu: action2();\nen,du: action3();');
sA.LabelString = str;

• Enter a concatenated text expression that uses the integer 10 as the ASCII equivalent of a newline
character:

str = ['A',10, ...
    'en: action1();',10, ...
    'du: action2();',10, ...
    'en,du: action3();'];
sA.LabelString = str;

To extract the state name, entry action, and during action specified by the state label, enter:

name = sA.Name

name =

    'A'

entry = sA.EntryAction

entry =

 Specify Labels in States and Transitions Programmatically

1-17



    ' action1();
      action3();'

during = sA.DuringAction

during =

    ' action2();
      action3();'

See Also
Functions
sprintf

Objects
Stateflow.State | Stateflow.Transition

More About
• “Overview of the Stateflow API” on page 1-2
• “Create Charts by Using the Stateflow API” on page 1-19
• “State Labels”
• “Transition Labels”

1 Using the Stateflow API

1-18



Create Charts by Using the Stateflow API
This example shows how to create a Stateflow® chart by using the Stateflow application
programming interface (API). The Stateflow API is a tool to create or change Stateflow charts through
MATLAB® commands. For more information, see “Overview of the Stateflow API” on page 1-2.

Create a Stateflow Chart

This Stateflow chart presents the logic underlying a half-wave rectifier. The chart contains two states
labeled On and Off. In the On state, the chart output signal y is equal to the input x. In the Off state,
the output signal is set to zero. When the input signal crosses some threshold t0, the chart
transitions between these states. The actions in each state update the value of y at each time step of
the simulation.

For more information on simulating this chart, see “Construct and Run a Stateflow Chart”.

1. Close all models.

bdclose all

2. Create a Simulink® model called rectify that contains an empty Stateflow Chart block.

sfnew rectify

Access the Chart Object

To use the Stateflow API, you begin by accessing the Simulink.Root object, which is the parent of
all objects in the Stateflow API. You use the Simulink.Root object to access the other API objects in
your model.

1. Use the function sfroot to access the Simulink.Root object.

rt = sfroot;

2. Call the find function to access the Stateflow.Chart object that corresponds to the chart in
your model.

ch = find(rt,'-isa','Stateflow.Chart');

3. To open the chart in the Stateflow Editor, call the view function.

view(ch);

4. To change the action language, modify the ActionLanguage property of the chart.

ch.ActionLanguage = 'C';

 Create Charts by Using the Stateflow API

1-19



Add States

To create a Stateflow API object as the child of a parent object, use the parent object as the input
argument to a function that creates the child object. For more information, see “Create and Delete
Stateflow Objects” on page 1-13.

1. Call the Stateflow.State function to add a state to the chart.

s1 = Stateflow.State(ch);

2. Adjust the position of the state by changing the Position property of the corresponding State
object. Specify the new position as a four-element vector in which the first two values are the (x,y)
coordinates of the upper-left corner of the state and the last two values are the width and height of
the state.

s1.Position = [30 30 90 60];

3. Specify the name and label for the state by changing the LabelString property, as described in
“Specify Labels in States and Transitions Programmatically” on page 1-16.

s1.LabelString = ['On',10,'y = x;'];

4. Create a second state. Adjust its position and specify its name and label.

s2 = Stateflow.State(ch);
s2.Position = [230 30 90 60];
s2.LabelString = ['Off',10,'y = 0;'];

Add Transitions

When you add a transition, you specify its source and destination by modifying its Source and
Destination properties. For a default transition, you specify a destination but no source.

1. Call the Stateflow.Transition function to add a transition to the chart.

t1 = Stateflow.Transition(ch);

2. Set the transition source and destination.

t1.Source = s1;
t1.Destination = s2;

3. Adjust the position of the transition by modifying its SourceOClock property.

t1.SourceOClock = 2.1;

1 Using the Stateflow API

1-20



4. Specify the transition label and its position by changing the LabelString and LabelPosition
properties.

t1.LabelString = '[x<t0]';
t1.LabelPosition= [159 23 31 16];

5. Create a second transition. Specify its source, destination, and label.

t2 = Stateflow.Transition(ch);
t2.Source = s2;
t2.Destination = s1;
t2.SourceOClock = 8.1;
t2.LabelString = '[x>=t0]';
t2.LabelPosition= [155 81 38 16];

6. Add a default transition to the state On. To make a vertical transition, modify the values of the
SourceEndpoint and Midpoint properties. For more information, see “Add a Default Transition” on
page 2-181.

t0 = Stateflow.Transition(ch);
t0.Destination = s1;
t0.DestinationOClock = 0;
t0.SourceEndpoint = t0.DestinationEndpoint-[0 30];
t0.Midpoint = t0.DestinationEndpoint-[0 15];

Add Data

Before you can simulate your chart, you must define each data symbol that you use in the chart and
specify its scope and type.

1. Call the Stateflow.Data function to add a data object that represents the input to the chart.

x = Stateflow.Data(ch);

 Create Charts by Using the Stateflow API

1-21



2. Specify the name of the data object as 'x' and its scope as 'Input'.

x.Name = 'x';
x.Scope = 'Input';

3. To specify that the input x has type double, set its Props.Type.Method property to 'Built-
in'. The default built-in data type is 'double'.

x.Props.Type.Method = 'Built-in';
x.DataType

ans = 
'double'

4. Add a data object that represents the output for the chart. Specify its name as 'y' and its scope as
'Output'.

y = Stateflow.Data(ch);
y.Name = 'y';
y.Scope = 'Output';

5. To specify that the output y has type single, set its Props.Type.Method property to 'Built-
in' and its DataType property to 'single'.

y.Props.Type.Method = 'Built-in';
y.DataType = 'single';
y.DataType

ans = 
'single'

6. Add a data object that represents the transition threshold in the chart. Specify its name as 't0'
and its scope as 'Constant'. Set its initial value to 0.

t0 = Stateflow.Data(ch);
t0.Name = 't0';
t0.Scope = 'Constant';
t0.Props.InitialValue = '0';

7. To specify that the threshold t0 has a fixed-point data type, set its Props.Type.Method property
to 'Fixed-point'. Then specify the values of the Props.Type properties that apply to fixed-point
data.

t0.Props.Type.Method = 'Fixed point';
t0.Props.Type.Signed = true;
t0.Props.Type.WordLength = '5';
t0.Props.Type.Fixpt.ScalingMode = 'Binary point';
t0.Props.Type.Fixpt.FractionLength = '2';
t0.DataType

ans = 
'fixdt(1,5,2)'

Save and Simulate Your Chart

To save the model that contains your completed chart, call the sfsave function.

sfsave

1 Using the Stateflow API

1-22



To simulate the chart, connect it to other blocks in the Simulink model through input and output
ports.

For more information, see “Simulate the Chart as a Simulink Block”.

See Also
Blocks
Chart

Functions
bdclose | find | sfnew | sfroot | sfsave | view

Objects
Stateflow.State | Stateflow.Transition | Stateflow.Data

More About
• “Overview of the Stateflow API” on page 1-2
• “Create and Delete Stateflow Objects” on page 1-13
• “Modify Properties and Call Functions of Stateflow Objects” on page 1-11
• “Specify Labels in States and Transitions Programmatically” on page 1-16

 Create Charts by Using the Stateflow API

1-23



Create Charts by Using a MATLAB Script
This example shows how to include Stateflow® API commands in a MATLAB® function or script.
Creating a script of API commands allows you to avoid repetitive chart creation steps and recreate
the same model with a single command. For more information, see “Overview of the Stateflow API”
on page 1-2.

Run the MATLAB Function

The function makeMyModel, which is defined at the bottom of this page on page 1-0 , produces a
"base" Stateflow chart that you can reuse as a template for your applications.

ch = makeMyModel;
view(ch)

Create Base Chart Function

This function creates a Stateflow chart and returns the corresponding Stateflow.Chart object.

function ch = makeMyModel

Create model and access new Stateflow.Chart object.

    rt = sfroot;
    prev_machines = find(rt,'-isa','Stateflow.Machine');
    sfnew;
    curr_machines = find(rt,'-isa','Stateflow.Machine');
    m = setdiff(curr_machines,prev_machines);
    ch = find(m,'-isa','Stateflow.Chart');

Create state A in chart.

    sA = Stateflow.State(ch);
    sA.Name = 'A';
    sA.Position = [50 50 310 200];

Create state A1 inside of state A.

1 Using the Stateflow API

1-24



    sA1 = Stateflow.State(ch);
    sA1.Name = 'A1';
    sA1.Position = [80 120 90 60];

Create state A2 inside of state A.

    sA2 = Stateflow.State(ch);
    sA2.Name = 'A2';
    sA2.Position = [240 120 90 60];

Create transition from A1 to A2.

    tA1A2 = Stateflow.Transition(ch);
    tA1A2.Source = sA1;
    tA1A2.Destination = sA2;
    tA1A2.SourceOClock = 3;
    tA1A2.DestinationOClock = 9;

Add default transition to state A.

    dtA = Stateflow.Transition(ch);
    dtA.Destination = sA;
    dtA.DestinationOClock = 0;
    dtA.SourceEndPoint = dtA.DestinationEndpoint-[0 30];
    dtA.MidPoint = dtA.DestinationEndpoint-[0 15];

Add default transition to state A1.

    dtA1 = Stateflow.Transition(ch);
    dtA1.Destination = sA1;
    dtA1.DestinationOClock = 0;
    dtA1.SourceEndPoint = dtA1.DestinationEndpoint-[0 30];
    dtA1.MidPoint = dtA1.DestinationEndpoint-[0 15];
end

See Also
Functions
view | sfroot | find | sfnew | setdiff

Objects
Stateflow.State | Stateflow.Transition

More About
• “Overview of the Stateflow API” on page 1-2
• “Create Charts by Using the Stateflow API” on page 1-19

 Create Charts by Using a MATLAB Script

1-25





API Object Reference

2



Stateflow.Annotation
Annotation in chart, state, box, or function

Description
Use Stateflow.Annotation objects to include descriptive comments in your chart. Annotations
can contain any combination of:

• Text
• Images
• Equations using TeX commands
• Hyperlinks that open a website or perform MATLAB functions

For more information, see “Add Descriptive Comments in a Chart”.

Creation

Syntax
annotation = Stateflow.Annotation(parent)

Description

annotation = Stateflow.Annotation(parent) creates a Stateflow.Annotation object in a
parent chart, state, box, or graphical function.

Input Arguments

parent — Parent for new annotation
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

Parent for the new annotation, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.Function
• Stateflow.State

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

2 API Object Reference

2-2



Content

Text — Text for annotation
'?' (default) | character vector

Text for the annotation, specified as a character vector.

Alignment — Alignment of text
'LEFT' (default) | 'CENTER' | 'RIGHT'

Alignment of the annotation text, specified as 'LEFT', 'CENTER', or 'RIGHT'.

Interpretation — Format of text
'OFF' (default) | 'RICH' | 'TEX'

Format of the annotation text, specified as 'OFF', 'RICH', or 'TEX'.

PlainText — Text without formatting
character vector

This property is read-only.

Annotation text without formatting, specified as a character vector.

IsImage — Whether annotation contains image
false or 0 (default) | true or 1

This property is read-only.

Whether the annotation contains an image, specified as a numeric or logical 1 (true) or 0 (false).

Graphical Appearance

Position — Position and size of annotation box
[0 0 8 16] (default) | [left top width height]

Position and size of annotation box, specified as a four-element numeric vector of the form [left
top width height].

InternalMargins — Space between text and border of annotation box
[0 0 0 0] (default) | [left top right bottom]

Space between the text and the border of the annotation box, specified as a four-element numeric
vector of the form [left top right bottom].

DropShadow — Whether to display a drop shadow around annotation box
false or 0 (default) | true or 1

Whether to display a drop shadow around the annotation box, specified as a numeric or logical 1
(true) or 0 (false).

FixedHeight — Whether to fix height of annotation box
false or 0 (default) | true or 1

Whether to fix height of the annotation box, specified as a numeric or logical 1 (true) or 0 (false).

 Stateflow.Annotation

2-3



• true — Fixes the height of the annotation box and hides content that is longer than the box.
• false — Resizes the annotation box vertically as you add content.

FixedWidth — Whether to fix width of annotation box
false or 0 (default) | true or 1

Whether to fix height of the annotation box, specified as a numeric or logical 1 (true) or 0 (false).

• true — Fixes the width of the annotation box and wraps text that is longer than the box.
• false — Resizes the annotation box horizontally as you add content.

BackgroundColor — Background color
[1 1 1] (default) | [red green blue]

Background color for the annotation, specified as a three-element numeric vector of the form [red
green blue] that specifies the red, green, and blue values. Each element must be in the range
between 0 and 1. This property applies only when the AutoBackgroundColor property is false.

ForegroundColor — Foreground color
[0 0 0] (default) | [red green blue]

Foreground color for the annotation, specified as a three-element numeric vector of the form [red
green blue] that specifies the red, green, and blue values. Each element must be in the range
between 0 and 1. This property applies only when the AutoForegroundColor property is false.

AutoBackgroundColor — Whether to use default background color
true or 1 (default) | false or 0

Whether to use the default background color, specified as a numeric or logical 1 (true) or 0 (false).

• true — Use the default color specified by the ChartColor property of the chart that contains the
annotation.

• false — Use the color specified by the BackgroundColor property of the annotation.

AutoForegroundColor — Whether to use default foreground color
true or 1 (default) | false or 0

Whether to use the default foreground color, specified as a numeric or logical 1 (true) or 0 (false).

• true — Use the default color specified by the StateLabelColor property of the chart that
contains the annotation.

• false — Use the color specified by the ForegroundColor property of the annotation.

Font — Font for annotation text
Stateflow.NoteFont object

Font for the annotation text, specified as a Stateflow.NoteFont object with these properties:

• Name — Font name, specified as a character vector. This property is read-only. The
StateFont.Name property of the chart that contains the annotation sets the value of this
property.

• Angle — Font angle, specified as 'NORMAL' or 'ITALIC'.
• Weight — Font weight, specified as 'NORMAL' or 'BOLD'.

2 API Object Reference

2-4



• Size — Font size, specified as a scalar.

Example: annotation.Font.Angle = 'ITALIC';
Example: annotation.Font.Weight = 'BOLD';
Example: annotation.Font.Size = 8;

Callbacks

ClickFcn — Callback on click
'' (default) | character vector

Callback on click, specified as a character vector. This callback contains MATLAB code to execute
when to execute when you click the annotation.

LoadFcn — Callback at model load
'' (default) | character vector

Callback at model load, specified as a character vector. This callback contains MATLAB code to
execute when you load the model that contains the annotation.

DeleteFcn — Callback at delete
'' (default) | character vector

Callback at delete, specified as a character vector. This callback contains MATLAB code to execute
before you delete the annotation.

UseDisplayTextAsClickCallback — Whether to use annotation text as callback
false or 0 (default) | true or 1

Whether to use the annotation text as a callback, specified as a numeric or logical 1 (true) or 0
(false). When this property is enabled, the contents of the Text property is used as the callback
when you click the annotation.

Hierarchy

Chart — Chart that contains annotation
Stateflow.Chart object

This property is read-only.

Chart that contains the annotation, specified as a Stateflow.Chart object.

Subviewer — Subviewer for annotation
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

This property is read-only.

Subviewer for the annotation, specified as a Stateflow.Chart, Stateflow.State,
Stateflow.Box, or Stateflow.Function object. The subviewer is the chart or subchart where
you can graphically view the annotation.

Machine — Machine that contains annotation
Stateflow.Machine object

 Stateflow.Annotation

2-5



This property is read-only.

Machine that contains the annotation, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the annotation in the model hierarchy, specified as a character vector.

Identification

Description — Description
'' (default) | character vector

Description for the annotation, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the annotation, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type | ...

User-defined tag for the annotation, specified as data of any type.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Use this property to distinguish the annotation from
other objects in the model. The value of this property is reassigned every time you start a new
MATLAB session and may be recycled after an object is deleted.

Object Functions
getParent Identify parent of object
dialog Open properties dialog box
view Display object in editing environment
fitToView Zoom in on graphical object
setImage Insert image into annotation

Examples

Add Text Annotation to Chart

Add an annotation in the chart ch. Set its content to 'This is an annotation.'

annotation = Stateflow.Annotation(ch);
annotation.Text = 'This is an annotation';

2 API Object Reference

2-6



Add Image Annotation to Chart

Add an annotation in the chart ch. Use the file myImageFile.png, which is located in the folder
myfolder/annotation_images, as the image for the annotation.

annotation = Stateflow.Annotation(ch);
setImage(annotation, ...
    fullfile('myfolder','annotation_images','myImageFile.png');

See Also
Stateflow.Box | Stateflow.Chart | Stateflow.Function | Stateflow.State

Topics
“Overview of the Stateflow API” on page 1-2
“Add Descriptive Comments in a Chart”
“List of Stateflow API Properties” on page 4-2

Introduced in R2017b

 Stateflow.Annotation

2-7



Stateflow.AtomicBox
Atomic box in chart, state, box, or function

Description
Use Stateflow.AtomicBox objects to encapsulate graphical, truth table, MATLAB, and Simulink
functions in a separate namespace. Atomic boxes allow for:

• Faster simulation after making small changes to a function in a chart with many states or levels of
hierarchy

• Reuse of the same functions across multiple charts and models
• Ease of team development for people working on different parts of the same chart
• Manual inspection of generated code for a specific function in a chart

For more information, see “Reuse Functions by Using Atomic Boxes”.

Creation
Syntax
atomicBox = Stateflow.AtomicBox(parent)

Description

atomicBox = Stateflow.AtomicBox(parent) creates a Stateflow.AtomicBox object in a
parent chart, state, box, or graphical function.

Input Arguments

parent — Parent for new atomic box
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

Parent for the new atomic box, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.Function
• Stateflow.State

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

2 API Object Reference

2-8



Content

Name — Name of atomic box
'' (default) | character vector

Name of the atomic box, specified as a character vector.

LabelString — Label for atomic box
'?' (default) | character vector

Label for the atomic box, specified as a character vector.

IsLink — Whether atomic box is a library link
true or 1 | false or 0

This property is read-only.

Whether the atomic box is a library link, specified as a numeric or logical 1 (true) or 0 (false).

IsExplicitlyCommented — Whether to comment out atomic box
false or 0 (default) | true or 1

Whether to comment out the atomic box, specified as a numeric or logical 1 (true) or 0 (false).
Setting this property to true is equivalent to right-clicking the atomic box and selecting Comment
Out. For more information, see “Commenting Stateflow Objects in a Chart”.

IsImplicitlyCommented — Whether atomic box is implicitly commented out
true or 1 | false or 0

This property is read-only.

Whether the atomic box is implicitly commented out, specified as a numeric or logical 1 (true) or 0
(false). The atomic box is implicitly commented out when you comment out a state, box, or function
that contains it.

CommentText — Comment text
'' (default) | character vector

Comment text for the atomic box, specified as a character vector. This property applies only when the
IsExplicitlyCommented property is true. In the Stateflow Editor, when you point to the comment
badge  on the atomic box, the text appears as a tooltip. When you set the
IsExplicitlyCommented property to false, the value of CommentText reverts to ''.

Graphical Appearance

Position — Position and size of atomic box
[0 0 90 60] (default) | [left top width height]

Position and size of the atomic box, specified as a four-element numeric vector of the form [left
top width height].

BadIntersection — Whether atomic box intersects a box, state, or function
true or 1 | false or 0

This property is read-only.

 Stateflow.AtomicBox

2-9



Whether the atomic box graphically intersects a box, state, or function, specified as a numeric or
logical 1 (true) or 0 (false).

ContentPreviewEnabled — Whether to display preview of atomic box contents
false or 0 (default) | true or 1

Whether to display a preview of the atomic box contents, specified as a numeric or logical 1 (true) or
0 (false).

FontSize — Font size for atomic box label
scalar

Font size for the atomic box label, specified as a scalar. The StateFont.Size property of the chart
that contains the atomic box sets the initial value of this property.

Hierarchy

Chart — Chart that contains atomic box
Stateflow.Chart object

This property is read-only.

Chart that contains the atomic box, specified as a Stateflow.Chart object.

Subchart — Contents of atomic box
Stateflow.Chart object

This property is read-only.

Contents of the atomic box, specified as a Stateflow.Chart object. Use this object to add children,
such as states and transitions, to the atomic box.

Subviewer — Subviewer for atomic box
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

This property is read-only.

Subviewer for the atomic box, specified as a Stateflow.Chart, Stateflow.State,
Stateflow.Box, or Stateflow.Function object. The subviewer is the chart or subchart where
you can graphically view the atomic box.

Machine — Machine that contains atomic box
Stateflow.Machine object

This property is read-only.

Machine that contains the atomic box, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the atomic box in the model hierarchy, specified as a character vector.

2 API Object Reference

2-10



Identification

Description — Description
'' (default) | character vector

Description for the atomic box, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the atomic box, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the atomic box, specified as data of any type.

SSIdNumber — Session-independent identifier
scalar

This property is read-only.

Session-independent identifier, specified as an integer scalar. Use this property to distinguish the
atomic box from other objects in the model.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Unlike SSIdNumber, the value of this property is
reassigned every time you start a new MATLAB session and may be recycled after an object is
deleted.

Object Functions
getParent Identify parent of object
dialog Open properties dialog box
isCommented Determine if graphical object is commented out
view Display object in editing environment
highlight Highlight graphical object
fitToView Zoom in on graphical object

Examples

Add Atomic Box to Chart

Add an atomic box in the chart ch. Set its name to 'A'.

atomicBox = Stateflow.AtomicBox(ch);
atomicBox.Name = 'A';

See Also
Stateflow.Box | Stateflow.Chart | Stateflow.Function | Stateflow.State

 Stateflow.AtomicBox

2-11



Topics
“Overview of the Stateflow API” on page 1-2
“Reuse Functions by Using Atomic Boxes”
“List of Stateflow API Properties” on page 4-2

Introduced in R2012b

2 API Object Reference

2-12



Stateflow.AtomicSubchart
Atomic subchart in chart, state, or box

Description
Use Stateflow.AtomicSubchart objects to create independent subcomponents in a Stateflow
chart. Atomic subcharts allow for:

• Reuse of the same state or subchart across multiple charts and models
• Faster simulation after making small changes to a chart with many states or levels of hierarchy
• Ease of team development when multiple people are working on different parts of the same chart
• Manual inspection of generated code for a specific state or subchart in a chart

For more information, see “Create Reusable Subcomponents by Using Atomic Subcharts”.

Creation

Syntax
atomicSubchart = Stateflow.AtomicSubchart(parent)

Description

atomicSubchart = Stateflow.AtomicSubchart(parent) creates a
Stateflow.AtomicSubchart object in a parent chart, state, or box.

Input Arguments

parent — Parent for new atomic subchart
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object

Parent for the new atomic subchart, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.State

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

 Stateflow.AtomicSubchart

2-13



Content

Name — Name of atomic subchart
'' (default) | character vector

Name of the atomic subchart, specified as a character vector.

LabelString — Label for atomic subchart
'?' (default) | character vector

Label for the atomic subchart, specified as a character vector.

IsLink — Whether atomic subchart is a library link
true or 1 | false or 0

This property is read-only.

Whether the atomic subchart is a library link, specified as a numeric or logical 1 (true) or 0 (false).

IsExplicitlyCommented — Whether to comment out atomic subchart
false or 0 (default) | true or 1

Whether to comment out the atomic subchart, specified as a numeric or logical 1 (true) or 0
(false). Setting this property to true is equivalent to right-clicking the atomic subchart and
selecting Comment Out. For more information, see “Commenting Stateflow Objects in a Chart”.

IsImplicitlyCommented — Whether atomic subchart is implicitly commented out
true or 1 | false or 0

This property is read-only.

Whether the atomic subchart is implicitly commented out, specified as a numeric or logical 1 (true)
or 0 (false). The atomic subchart is implicitly commented out when you comment out a state or box
that contains it.

CommentText — Comment text
'' (default) | character vector

Comment text for the atomic subchart, specified as a character vector. This property applies only
when the IsExplicitlyCommented property is true. In the Stateflow Editor, when you point to the
comment badge  on the atomic subchart, the text appears as a tooltip. When you set the
IsExplicitlyCommented property to false, the value of CommentText reverts to ''.

Graphical Appearance

Position — Position and size of atomic subchart
[0 0 90 60] (default) | [left top width height]

Position and size of the atomic subchart, specified as a four-element numeric vector of the form
[left top width height].

BadIntersection — Whether atomic subchart intersects a box, state, or function
true or 1 | false or 0

This property is read-only.

2 API Object Reference

2-14



Whether the atomic subchart graphically intersects a box, state, or function, specified as a numeric or
logical 1 (true) or 0 (false).

ContentPreviewEnabled — Whether to display preview of atomic subchart contents
false or 0 (default) | true or 1

Whether to display a preview of the atomic subchart contents, specified as a numeric or logical 1
(true) or 0 (false).

ArrowSize — Size of incoming transition arrows
8 (default) | scalar

Size of incoming transition arrows, specified as a scalar.

FontSize — Font size for atomic subchart label
scalar

Font size for the atomic subchart label, specified as a scalar. The StateFont.Size property of the
chart that contains the atomic subchart sets the initial value of this property.

State Decomposition

Type — Decomposition of sibling states
'AND' | 'OR'

This property is read-only.

Decomposition of sibling states, specified as 'OR' or 'AND'. The atomic subchart inherits this
property from the Decomposition property of its parent state or chart.

ExecutionOrder — Execution order in parallel (AND) decomposition
scalar

Execution order for the atomic subchart in parallel (AND) decomposition, specified as an integer
scalar. This property applies only when both of these conditions are satisfied:

• The Type property of the atomic subchart is 'AND'.
• The UserSpecifiedStateTransitionExecutionOrder property of the chart that contains the

atomic subchart is true.

Active State Output

HasOutputData — Whether to create active state data output
false or 0 (default) | true or 1

Whether to create an active state data output port for the atomic subchart, specified as a numeric or
logical 1 (true) or 0 (false). For more information, see “Monitor State Activity Through Active State
Data”.

OutputData — Active state data object
Stateflow.Data object

This property is read-only.

Active state data object for the atomic subchart, specified as a Stateflow.Data object. This
property applies only when the HasOutputData property for the atomic subchart is true.

 Stateflow.AtomicSubchart

2-15



OutputPortName — Name of active state data object
character vector

Name of the active state data object for the atomic subchart, specified as a character vector. This
property applies only when the HasOutputData property for the atomic subchart is true.

OutputMonitoringMode — Monitoring mode for active state output
'SelfActivity'

Monitoring mode for the active state output data, specified as a character vector. For atomic
subcharts, the only option is 'SelfActivity'.

Signal Logging

LoggingInfo — Signal logging properties
Stateflow.SigLoggingInfo object

Signal logging properties for the atomic subchart, specified as a Stateflow.SigLoggingInfo
object with these properties:

• DataLogging — Whether to enable signal logging, specified as a numeric or logical 1 (true) or 0
(false).

• DecimateData — Whether to limit the amount of logged data, specified as a numeric or logical 1
(true) or 0 (false).

• Decimation — Decimation interval, specified as an integer scalar. This property applies only
when the DecimateData property is true.

• LimitDataPoints — Whether to limit the number of data points to log, specified as a numeric or
logical 1 (true) or 0 (false).

• MaxPoints — Maximum number of data points to log, specified as an integer scalar. This property
applies only when the LimitDataPoints property is true.

• NameMode — Source of the signal name, specified as 'SignalName' or 'Custom'.
• LoggingName — Custom signal name, specified as a character vector. This property applies only

when the NameMode property is 'Custom'.

For more information, see “Log Simulation Output for States and Data”.
Example: state.LoggingInfo.DataLogging = true;

Debugging

Debug — Debugger properties
Stateflow.StateDebug object

Debugger properties for the state, atomic subchart, or Simulink based state, specified as a
Stateflow.StateDebug object with these properties:

• OnEntry — Whether to set the On State Entry breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

• OnDuring — Whether to set the During State breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

• OnExit — Whether to set the On State Exit breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

2 API Object Reference

2-16



For more information, see “Set Breakpoints to Debug Charts”.
Example: atomicSubchart.Debug.Breakpoints.OnEntry = true;
Example: atomicSubchart.Debug.Breakpoints.OnDuring = true;
Example: atomicSubchart.Debug.Breakpoints.OnExit = true;

TestPoint — Whether to set atomic subchart as test point
false or 0 (default) | true or 1

Whether to set the atomic subchart as a test point, specified as a numeric or logical 1 (true) or 0
(false).

Hierarchy

Chart — Chart that contains atomic subchart
Stateflow.Chart object

This property is read-only.

Chart that contains the atomic subchart, specified as a Stateflow.Chart object.

Subchart — Contents of atomic subchart
Stateflow.Chart object

This property is read-only.

Contents of the atomic subchart, specified as a Stateflow.Chart object. Use this object to add
children, such as states and transitions, to the atomic subchart. For more information, see “Add Exit
Port and Junction to Atomic Subchart” on page 2-18.

Subviewer — Subviewer for atomic subchart
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object

This property is read-only.

Subviewer for the atomic subchart, specified as a Stateflow.Chart, Stateflow.State, or
Stateflow.Box object. The subviewer is the chart or subchart where you can graphically view the
atomic subchart.

Machine — Machine that contains atomic subchart
Stateflow.Machine object

This property is read-only.

Machine that contains the atomic subchart, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the atomic subchart in the model hierarchy, specified as a character vector.

 Stateflow.AtomicSubchart

2-17



Identification

Description — Description
'' (default) | character vector

Description for the atomic subchart, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the atomic subchart, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the atomic subchart, specified as data of any type.

SSIdNumber — Session-independent identifier
scalar

This property is read-only.

Session-independent identifier, specified as an integer scalar. Use this property to distinguish the
atomic subchart from other objects in the model.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Unlike SSIdNumber, the value of this property is
reassigned every time you start a new MATLAB session and may be recycled after an object is
deleted.

Object Functions
getParent Identify parent of object
dialog Open properties dialog box
isCommented Determine if graphical object is commented out
view Display object in editing environment
highlight Highlight graphical object
fitToView Zoom in on graphical object

Examples

Add Atomic Subchart to Chart

Add an atomic subchart in the chart ch. Set its name to 'A'.

atomicSubchart = Stateflow.AtomicSubchart(ch);
atomicSubchart.Name = 'A';

2 API Object Reference

2-18



Add Exit Port and Junction to Atomic Subchart

Find the Stateflow.AtomicSubchart object that corresponds to the atomic subchart A in the
chart ch.

atomicSubchart = find(ch,'-isa','Stateflow.AtomicSubchart','Name','A');

Add an exit junction to the atomic subchart. Use the Subchart property of the atomic subchart as
the parent of the exit junction. Display the value of the PortType property of the exit junction.

exitJunction = Stateflow.Port(atomicSubchart.Subchart,'ExitJunction');
exitJunction.PortType

ans =

    'ExitJunction'

Set the label of the exit junction to 'exit'.

exitJunction.labelString = 'exit';

Find the Stateflow.Port object for the matching exit port. Display the value of the PortType
property of the exit port.

exitPort = Stateflow.findMatchingPort(exitJunction);
exitPort.PortType

ans =

    'ExitPort'

Display the label of the exit port.

exitPort.labelString

ans =

    'exit'

See Also
Functions
find | Stateflow.findMatchingPort

Objects
Stateflow.Box | Stateflow.Chart | Stateflow.Port | Stateflow.State

Topics
“Overview of the Stateflow API” on page 1-2
“Create Reusable Subcomponents by Using Atomic Subcharts”
“List of Stateflow API Properties” on page 4-2

Introduced in R2010b

 Stateflow.AtomicSubchart

2-19



Stateflow.Box
Box in chart, state, box, or function

Description
Use Stateflow.Box objects to organize objects such as functions and states in your chart. You can
also use a box to encapsulate states and functions in a separate namespace. For more information,
see “Group Chart Objects by Using Boxes”.

Creation

Syntax
box = Stateflow.Box(parent)

Description

box = Stateflow.Box(parent) creates a Stateflow.Box object in a parent chart, state, box, or
graphical function.

Input Arguments

parent — Parent for new box
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

Parent for the new box, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.Function
• Stateflow.State

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Content

Name — Name of box
'' (default) | character vector

Name of the box, specified as a character vector.

2 API Object Reference

2-20



LabelString — Label for box
'?' (default) | character vector

Label for the box, specified as a character vector.

IsExplicitlyCommented — Whether to comment out box
false or 0 (default) | true or 1

Whether to comment out the box, specified as a numeric or logical 1 (true) or 0 (false). Setting this
property to true is equivalent to right-clicking the box and selecting Comment Out. For more
information, see “Commenting Stateflow Objects in a Chart”.

IsImplicitlyCommented — Whether box is implicitly commented out
true or 1 | false or 0

This property is read-only.

Whether the box is implicitly commented out, specified as a numeric or logical 1 (true) or 0 (false).
The box is implicitly commented out when you comment out a state, box, or function that contains it.

CommentText — Comment text
'' (default) | character vector

Comment text for the box, specified as a character vector. This property applies only when the
IsExplicitlyCommented property is true. In the Stateflow Editor, when you point to the comment
badge  on the box, the text appears as a tooltip. When you set the IsExplicitlyCommented
property to false, the value of CommentText reverts to ''.

Graphical Appearance

Position — Position and size of box
[0 0 90 60] (default) | [left top width height]

Position and size of the box, specified as a four-element numeric vector of the form [left top
width height].

BadIntersection — Whether box intersects a box, state, or function
true or 1 | false or 0

This property is read-only.

Whether the box graphically intersects a box, state, or function, specified as a numeric or logical 1
(true) or 0 (false).

IsGrouped — Whether box is a grouped box
false or 0 (default) | true or 1

Whether the box is a grouped box, specified as a numeric or logical 1 (true) or 0 (false). When you
copy and paste a grouped box, you copy not only the box but all of its contents. For more information,
see “Copy and Paste by Grouping” on page 2-24.

IsSubchart — Whether box is a subchart
false or 0 (default) | true or 1

Whether the box is a subchart, specified as a numeric or logical 1 (true) or 0 (false).

 Stateflow.Box

2-21



ContentPreviewEnabled — Whether to display preview of box contents
false or 0 (default) | true or 1

Whether to display a preview of the box contents, specified as a numeric or logical 1 (true) or 0
(false). This property applies only when the IsSubchart property is true.

FontSize — Font size for box label
scalar

Font size for the box label, specified as a scalar. The StateFont.Size property of the chart that
contains the box sets the initial value of this property.

Hierarchy

Chart — Chart that contains box
Stateflow.Chart object

This property is read-only.

Chart that contains the box, specified as a Stateflow.Chart object.

Subviewer — Subviewer for box
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

This property is read-only.

Subviewer for the box, specified as a Stateflow.Chart, Stateflow.State, Stateflow.Box, or
Stateflow.Function object. The subviewer is the chart or subchart where you can graphically
view the box.

Machine — Machine that contains box
Stateflow.Machine object

This property is read-only.

Machine that contains the box, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the box in the model hierarchy, specified as a character vector.

Identification

Description — Description
'' (default) | character vector

Description for the box, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the box, specified as a character vector.

2 API Object Reference

2-22



Tag — User-defined tag
[] (default) | any data type

User-defined tag for the box, specified as data of any type.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Use this property to distinguish the box from other
objects in the model. The value of this property is reassigned every time you start a new MATLAB
session and may be recycled after an object is deleted.

Object Functions
find Identify specified objects in hierarchy
getChildren Identify children of object
getParent Identify parent of object
dialog Open properties dialog box
isCommented Determine if graphical object is commented out
view Display object in editing environment
highlight Highlight graphical object
fitToView Zoom in on graphical object

Examples

Add Box to Chart

Add a box in the chart ch. Set its name to 'A'.

box = Stateflow.Box(ch);
box.Name = 'A';

See Also
Stateflow.Chart | Stateflow.Function | Stateflow.State

Topics
“Overview of the Stateflow API” on page 1-2
“Group Chart Objects by Using Boxes”
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.Box

2-23



Stateflow.Clipboard
Clipboard to copy and paste Stateflow objects

Description
Use the Stateflow.Clipboard object to copy and paste graphical and nongraphical objects within
the same chart, between charts in the same Simulink model, or between charts in different models.

Creation
There is only one Stateflow.Clipboard object, which is created automatically when you start
Stateflow. To access this object, call the sfclipboard function:

clipboard = sfclipboard;

Object Functions
copy Copy array of objects to clipboard
pasteTo Paste objects in clipboard to specified container object

Examples

Copy and Paste by Grouping

Group state A and copy its contents to chart ch. When you group a state, box, or graphical function,
you can copy and paste all the objects contained in the grouped object, as well as all the relationships
among these objects. This method is the simplest way of copying and pasting objects
programmatically. If a state is not grouped, copying the state does not copy any of its contents.

1 Find the Stateflow.State object named A in chart ch.

sA = find(ch,'-isa','Stateflow.State','Name','A');

2 API Object Reference

2-24



2 Group state A and its contents by setting the IsGrouped property for sA to true. Save the
previous setting of this property so you can revert to it later.

prevGrouping = sA.IsGrouped;
sA.IsGrouped = true;

3 Change the name of the state to 'Copy_of_A'. Save the previous name so you can revert to it
later.

prevName = sA.Name;
newName = ['Copy_of_' prevName];
sA.Name = newName;

4 Access the clipboard object.

cb = sfclipboard;
5 Copy the grouped state to the clipboard.

copy(cb,sA);
6 Restore the state properties to their original settings.

sA.IsGrouped = prevGrouping;
sA.Name = prevName;

7 Paste a copy of the objects from the clipboard to the chart.

pasteTo(cb,ch);
8 Adjust the state properties of the new state.

sNew = find(ch,'-isa','Stateflow.State','Name',newName);
sNew.Position = sA.Position + [400 0 0 0];
sNew.IsGrouped = prevGrouping;

Copy and Paste Array of Objects

Copy states A1 and A2, along with the transition between them, to a new state in chart ch. To
preserve transition connections and containment relationships between objects, copy all the
connected objects at once.

 Stateflow.Clipboard

2-25



1 Find the Stateflow.State object named A in chart ch.

sA = find(ch,'-isa','Stateflow.State','Name','A');
2 Add a new state called B. To enable pasting of other objects inside B, convert the new state to a

subchart.

sB = Stateflow.State(ch);
sB.Name = 'B';
sB.Position = sA.Position + [400 0 0 0];
sB.IsSubchart = true;

3 Create an array called objArray that contains the states and transitions in state A. Use the
function setdiff to remove state A from the array of objects to copy.

objArrayS = find(sA,'-isa','Stateflow.State');
objArrayS = setdiff(objArrayS,sA);
objArrayT = find(sA,'-isa','Stateflow.Transition');
objArray = [objArrayS objArrayT];

4 Access the clipboard object.

cb = sfclipboard;
5 Copy the objects in objArray and paste them in subchart B.

copy(cb,objArray);
pasteTo(cb,sB);

6 Revert B to a state.

sB.IsSubchart = false;
sB.IsGrouped = false;

7 Reposition the states and transitions in B.

newStates = find(sB,'-isa','Stateflow.State');
newStates = setdiff(newStates,sB);
newTransitions = find(sB,'-isa','Stateflow.Transition');
newOClocks = get(newTransitions,{'SourceOClock','DestinationOClock'});
for i = 1:numel(newStates)
newStates(i).Position = newStates(i).Position + [25 35 0 0];
end
set(newTransitions,{'SourceOClock','DestinationOClock'},newOClocks);

2 API Object Reference

2-26



See Also
Functions
find | setdiff | sfclipboard

Objects
Stateflow.State

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.Clipboard

2-27



Stateflow.Chart
Graphical representation of a finite state machine

Description
Use a Stateflow.Chart object to create a graphical representation of a finite state machine by
combining states, transitions, and data. For more information, see “Finite State Machine Concepts”
and “Create Charts by Using the Stateflow API” on page 1-19.

Creation
To create a Stateflow.Chart object, call the function sfnew. For example, to create an empty
chart in a new Simulink model called myModel, enter:

sfnew myModel

Alternatively, you can add a new chart to an existing model by using the function add_block:

add_block('sflib/Chart','myModel/Chart')

Then, to access the Stateflow.Chart object, call the find function for the Simulink.Root object:

rt = sfroot;
chart = find(rt,'-isa','Stateflow.Chart', ...
    'Path','myModel/Chart');

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Content

Name — Name of chart
'Chart' (default) | character vector

Name of the chart, specified as a character vector.

ActionLanguage — Action language
'MATLAB' (default) | 'C'

Action language used to program the chart, specified as 'MATLAB' or 'C'. For more information, see
“Differences Between MATLAB and C as Action Language Syntax”.

StateMachineType — State machine semantics
'Classic' (default) | 'Mealy' | 'Moore'

2 API Object Reference

2-28



State machine semantics implemented by the chart, specified as 'Classic', 'Mealy', or 'Moore'.
For more information, see “Overview of Mealy and Moore Machines”.

SupportVariableSizing — Whether chart supports variable-size data
true or 1 (default) | false or 0

Whether the chart supports variable-size data, specified as a numeric or logical 1 (true) or 0
(false). Only variable-size data can change dimension during simulation. For more information, see
“Declare Variable-Size Data in Stateflow Charts”.

State Decomposition

Decomposition — Decomposition of substates
'EXCLUSIVE_OR' (default) | 'PARALLEL_AND'

Decomposition of substates at the top level of containment in the chart, specified as
'EXCLUSIVE_OR' or 'PARALLEL_AND'. For more information, see “Specify Substate
Decomposition”.

Chart Initialization

ExecuteAtInitialization — Whether to initialize state configuration
false or 0 (default) | true or 1

Whether to initialize the state configuration of the chart at time zero instead of at the first input
event, specified as a numeric or logical 1 (true) or 0 (false). For more information, see “Execution
of a Chart at Initialization”.

StatesWhenEnabling — Behavior of states when event reenables chart
'' (default) | 'held' | 'reset'

Behavior of the states when a function-call input event reenables the chart, specified as one of these
values:

• '' — The chart does not contain function-call input events.
• 'held' — The chart maintains the most recent values of the states.
• 'reset' — The chart reverts to the initial conditions of the states.

For more information, see “Control States in Charts Enabled by Function-Call Input Events”.

InitializeOutput — Whether to initialize output data
false or 0 (default) | true or 1

Whether to initialize the output data every time the chart wakes up, specified as a numeric or logical
1 (true) or 0 (false). For more information, see “Initialize outputs every time chart wakes up”.

Active State Output

HasOutputData — Whether to create active state data output
false or 0 (default) | true or 1

Whether to create an active state data output port for the chart, specified as a numeric or logical 1
(true) or 0 (false). For more information, see “Monitor State Activity Through Active State Data”.

 Stateflow.Chart

2-29



OutputData — Active state data object
Stateflow.Data object

This property is read-only.

Active state data object for the chart, specified as a Stateflow.Data object. This property applies
only when the HasOutputData property for the chart is true.

OutputPortName — Name of active state data object
character vector

Name of the active state data object for the chart, specified as a character vector. This property
applies only when the HasOutputData property for the chart is true.

OutputMonitoringMode — Monitoring mode for active state output
'ChildActivity' (default) | 'LeafStateActivity'

Monitoring mode for the active state output data, specified as 'ChildActivity' or
'LeafStateActivity'.

EnumTypeName — Name of enumerated data type for active state data object
character vector

Name of the enumerated data type for the active state data object for the chart, specified as a
character vector. For more information, see “Enum Name”.

DoNotAutogenerateEnum — Whether to define enumerated data type manually
false or 0 (default) | true or 1

Whether to define the enumerated data type for the active state data output manually, specified as a
numeric or logical 1 (true) or 0 (false). For more information, see “Define State Activity
Enumeration Type”.

Discrete and Continuous-Time Semantics

ChartUpdate — Activation method for chart
'INHERITED' (default) | 'CONTINUOUS' | 'DISCRETE'

Activation method for the chart, specified as 'CONTINUOUS', 'DISCRETE', or 'INHERITED'. For
more information, see “Update Method”.

SampleTime — Sample time for activating chart
'-1' (default) | character vector

Sample time for activating the chart, specified as a character vector. This property applies only when
the ChartUpdate property for the chart is 'DISCRETE'.

EnableZeroCrossings — Whether to enable zero-crossing detection
true or 1 (default) | false or 0

Whether to enable zero-crossing detection on state transitions in the chart, specified as a numeric or
logical 1 (true) or 0 (false). This property applies only when the ChartUpdate property for the
chart is set to 'CONTINUOUS'. For more information, see “Disable Zero-Crossing Detection”.

2 API Object Reference

2-30



Super Step Semantics

EnableNonTerminalStates — Whether to enable super step semantics
false or 0 (default) | true or 1

Whether to enable super step semantics for the chart, specified as a numeric or logical 1 (true) or 0
(false). For more information, see “Super Step Semantics”.

NonTerminalMaxCounts — Maximum number of transitions in one super step
1000 (default) | scalar

Maximum number of transitions the chart can take in one super step, specified as an integer scalar.
This property applies only when the EnableNonTerminalStates property for the chart is true.

NonTerminalUnstableBehavior — Behavior if super step exceeds maximum number of
transitions
'Proceed' (default) | 'Throw Error'

Behavior if a super step for the chart exceeds the maximum number of transitions specified in the
NonTerminalMaxCounts property before reaching a stable state, specified as one of these values:

• 'Proceed' — The chart goes to sleep with the last active state configuration.
• 'Throw Error' — The chart generates an error.

This property applies only when the EnableNonTerminalStates property for the chart is true.

Exported Functions

ExportChartFunctions — Whether to export chart-level functions
false or 0 (default) | true or 1

Whether to export chart-level functions to other blocks in the Simulink model, specified as a numeric
or logical 1 (true) or 0 (false). For more information, see “Export Stateflow Functions for Reuse”.

AllowGlobalAccessToExportedFunctions — Whether exported functions are globally
visible
false or 0 (default) | true or 1

Whether exported functions from the chart are globally visible in the Simulink model, specified as a
numeric or logical 1 (true) or 0 (false). When this property is enabled, blocks throughout the model
can call functions exported from the chart without using qualified notation. This property applies only
when the ExportChartFunctions property for the chart is true.

Integer and Fixed-Point Data

SaturateOnIntegerOverflow — Whether data saturates on integer overflow
true or 1 (default) | false or 0

Whether the data in the chart saturates on integer overflow, specified as a numeric or logical 1
(true) or 0 (false). When this property is disabled, the data in the chart wraps on integer overflow.
For more information, see “Handle Integer Overflow for Chart Data”.

TreatAsFi — Inherited Simulink signals to treat as fi objects
'Fixed-point' (default) | 'Fixed-point & Integer'

 Stateflow.Chart

2-31



Inherited Simulink signals to treat as Fixed-Point Designer™ fi objects, specified as one of these
values:

• 'Fixed-point' — The chart treats all fixed-point inputs as fi objects.
• 'Fixed-point & Integer' — The chart treats all fixed-point and integer inputs as fi objects.

This property applies only to charts that use MATLAB as the action language.

EmlDefaultFimath — Default fimath properties
'Same as MATLAB Default' (default) | 'Other:UserSpecified'

Default fimath properties for the chart, specified as one of these values:

• 'Same as MATLAB Default' — Use the same fimath properties as the current default fimath
object.

• 'Other:UserSpecified' — Use the InputFimath property to specify the default fimath
object.

This property applies only when the ActionLanguage property of the chart is 'MATLAB'.

InputFimath — Default fimath object
character vector

Default fimath object, specified as a character vector. When the EmlDefaultFimath property for
the chart is 'Other:UserSpecified', you can use this property to:

• Enter an expression that constructs a fimath object.
• Enter the variable name for a fimath object in the MATLAB or model workspace.

This property applies only to charts that use MATLAB as the action language.

Code Generation

GeneratePreprocessorConditionals — Whether generated code includes a preprocessor
conditional
false or 0 (default) | true or 1

Whether the generated code includes a preprocessor conditional statement for the variant conditions
in the chart, specified as a numeric or logical 1 (true) or 0 (false). This property applies only when
generating code with Embedded Coder®. For more information, see “Code Generation Using Variant
Transitions”.

C Action Language

StrongDataTypingWithSimulink — Whether to use strong data typing
true or 1 (default) | false or 0

Whether to use strong data typing when the chart interfaces with Simulink input and output signals,
specified as a numeric or logical 1 (true) or 0 (false). This property applies only to charts that use
C as the action language. For more information, see “Use strong data typing with Simulink I/O”.

EnableBitOps — Whether to use bit operations
false or 0 (default) | true or 1

2 API Object Reference

2-32



Whether to use bit operations in state and transition actions in the chart, specified as a numeric or
logical 1 (true) or 0 (false). This property applies only to charts that use C as the action language.
For more information, see “Enable C-bit operations”.

UserSpecifiedStateTransitionExecutionOrder — Whether to use explicit ordering of
parallel states and transitions
true or 1 (default) | false or 0

Whether to use explicit ordering of parallel states and transitions, specified as a numeric or logical 1
(true) or 0 (false). This property applies only to charts that use C as the action language. For more
information, see “User-specified state/transition execution order”.

Debugging

Debug — Debugger properties
Stateflow.ChartDebug object

Debugger properties for the chart, specified as a Stateflow.ChartDebug object with this property:

• Breakpoints.OnEntry — Whether to set the On Chart Entry breakpoint, specified as a
numeric or logical 1 (true) or 0 (false).

For more information, see “Set Breakpoints to Debug Charts”.
Example: chart.Debug.Breakpoints.OnEntry = true;

Graphical Appearance

Editor — Editor
Stateflow.Editor object

This property is read-only.

Editor for the chart, specified as a Stateflow.Editor object. You can use this object to control the
position, size, and magnification level of the Stateflow Editor window.

Visible — Whether editor is displaying chart
true or 1 | false or 0

Whether the Stateflow Editor window is displaying the chart, specified as a numeric or logical 1
(true) or 0 (false).

ChartColor — Background color
[1 0.9608 0.8824] (default) | [red green blue]

Background color for the chart, specified as a three-element numeric vector of the form [red green
blue] that specifies the red, green, and blue values. Each element must be in the range between 0
and 1.

StateColor — Color for states
[0 0 0] (default) | [red green blue]

Color for the boxes, functions, and states in the chart, specified as a three-element numeric vector of
the form [red green blue] that specifies the red, green, and blue values. Each element must be in
the range between 0 and 1.

 Stateflow.Chart

2-33



TransitionColor — Color for transitions
[0.2902 0.3294 0.6039] (default) | [red green blue]

Color for transitions in the chart, specified as a three-element numeric vector of the form [red
green blue] that specifies the red, green, and blue values. Each element must be in the range
between 0 and 1.

JunctionColor — Color for junctions
[0.6824 0.3294 0] (default) | [red green blue]

Color for junctions in the chart, specified as a three-element numeric vector of the form [red green
blue] that specifies the red, green, and blue values. Each element must be in the range between 0
and 1.

StateFont — Font for state labels
Stateflow.StateFont object

Font for the box, function, and state labels in the chart, specified as a Stateflow.StateFont object
with these properties:

• Name — Font name, specified as a character vector. This property also determines the font for
annotations in the chart.

• Angle — Font angle, specified as 'NORMAL' or 'ITALIC'.
• Weight — Font weight, specified as 'NORMAL' or 'BOLD'.
• Size — Default font size for new boxes, functions, and states, specified as a scalar. This property

also determines the default font size for new annotations in the chart.

Example: chart.StateFont.Name = 'Arial';
Example: chart.StateFont.Angle = 'ITALIC';
Example: chart.StateFont.Weight = 'BOLD;
Example: chart.StateFont.Size = 8;

StateLabelColor — Color for state labels
[0 0 0] (default) | [red green blue]

Color for the box, function, and state labels in the chart, specified as a three-element numeric vector
of the form [red green blue] that specifies the red, green, and blue values. Each element must be
in the range between 0 and 1.

TransitionFont — Font for transition labels
Stateflow.TransFont object

Font for the transition labels in the chart, specified as a Stateflow.TransFont object with these
properties:

• Name — Font name, specified as a character vector.
• Angle — Font angle, specified as 'NORMAL' or 'ITALIC'.
• Weight — Font weight, specified as 'NORMAL' or 'BOLD'.
• Size — Default font size for new transitions, specified as a scalar.

Example: chart.TransitionFont.Name = 'Arial';

2 API Object Reference

2-34



Example: chart.TransitionFont.Angle = 'ITALIC';
Example: chart.TransitionFont.Weight = 'BOLD';
Example: chart.TransitionFont.Size = 8;

TransitionLabelColor — Color for transition labels
[0.2902 0.3294 0.6039] (default) | [red green blue]

Color for the transition labels in the chart, specified as a three-element numeric vector of the form
[red green blue] that specifies the red, green, and blue values. Each element must be in the
range between 0 and 1.

Hierarchy

Machine — Machine that contains chart
Stateflow.Machine object

This property is read-only.

Machine that contains the chart, specified as a Stateflow.Machine object.

Path — Location of chart in model hierarchy
character vector

This property is read-only.

Location of the chart in the model hierarchy, specified as a character vector.

Dirty — Whether chart has changed
true or 1 | false or 0

Whether the chart has changed after being opened or saved, specified as a numeric or logical 1
(true) or 0 (false).

Locked — Whether chart is locked
false or 0 (default) | true or 1

Whether the chart is locked, specified as a numeric or logical 1 (true) or 0 (false). Enable this
property to prevent changes in the chart.

Iced — Whether chart is locked
false or 0 (default) | true or 1

This property is read-only.

Whether the chart is locked, specified as a numeric or logical 1 (true) or 0 (false). This property is
equivalent to the property Locked, but is used internally to prevent changes in the chart during
simulation.

Identification

Description — Description
'' (default) | character vector

Description for the chart, specified as a character vector.

 Stateflow.Chart

2-35



Document — Document link
'' (default) | character vector

Document link for the chart, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the chart, specified as data of any type.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Use this property to distinguish the chart from other
objects in the model. The value of this property is reassigned every time you start a new MATLAB
session and may be recycled after an object is deleted.

Object Functions
find Identify specified objects in hierarchy
getChildren Identify children of object
defaultTransitions Identify default transitions in specified object
dialog Open properties dialog box
view Display object in editing environment
fitToView Zoom in on graphical object

Examples
Create Empty Stateflow Chart

Call the function sfnew to open a new Simulink model that contains an empty Stateflow chart.

sfnew

Access the Simulink.Root object by calling the sfroot function.

rt = sfroot;

Access the Stateflow.Chart object by calling the find function for the Simulink.Root object.

chart = find(rt,'-isa','Stateflow.Chart');

See Also
Blocks
Chart

Functions
sfnew | sfroot | add_block

Topics
“Overview of the Stateflow API” on page 1-2

2 API Object Reference

2-36



“Finite State Machine Concepts”
“Specify Properties for Stateflow Charts”
“Create Charts by Using the Stateflow API” on page 1-19
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.Chart

2-37



Stateflow.Data
Data in chart, state, box, or function

Description
Use Stateflow.Data objects to store values that are visible at a specific level of the Stateflow
hierarchy. For more information, see “Add Stateflow Data” and “Set Data Properties”.

Creation
Syntax
data = Stateflow.Data(parent)

Description

data = Stateflow.Data(parent) creates a Stateflow.Data object in a parent chart, state,
box, or function.

Input Arguments

parent — Parent for new data object
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object | ...

Parent for the new data object, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.EMFunction
• Stateflow.Function
• Stateflow.SLFunction
• Stateflow.State
• Stateflow.TruthTable

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Interface

Name — Name of data object
'data' (default) | character vector

2 API Object Reference

2-38



Name of the data object, specified as a character vector.

Scope — Scope of data object
'Local' (default) | 'Input' | 'Output' | 'Constant' | 'Parameter' | 'Data Store Memory' |
'Temporary' | 'Imported' | 'Exported'

Scope of the data object, specified as one of these values:

• 'Local'
• 'Input'
• 'Output'
• 'Constant'
• 'Parameter'
• 'Data Store Memory'
• 'Temporary'
• 'Imported'
• 'Exported'

For more information, see “Scope”.

Port — Port index for data object
scalar

Port index for the data object, specified as an integer scalar. This property applies only to input and
output data. For more information, see “Port”.

UpdateMethod — Method for updating data object
'Discrete' (default) | 'Continuous'

Method for updating data object, specified as 'Discrete' or 'Continuous'. This property applies
only when the ChartUpdate property of the chart that contains the data is 'CONTINUOUS'. For
more information, see “Continuous-Time Modeling in Stateflow”.

InitializeMethod — Method for initializing data object
'Expression' (default) | 'Parameter' | 'Not Needed'

Method for initializing the value of the data object, specified as a character vector that depends on
the scope of the data:

• For local and output data, use 'Expression' or 'Parameter'.
• For constant data, use 'Expression'.
• For input data, parameters, and data store memory, use 'Not Needed'.

To specify the initial value of the data object, use the Props.InitialValue property.

This property is equivalent to the Initial Value drop-down list in the Model Explorer and the Data
properties dialog box. For more information, see “Initial Value”.

SaveToWorkspace — Whether to save data object to workspace variable
false or 0 (default) | true or 1

Whether to save the value of the data object to a variable of the same name in the MATLAB base
workspace at the end of the simulation, specified as a numeric or logical 1 (true) or 0 (false). This

 Stateflow.Data

2-39



property applies only to data in charts that use C as the action language. For more information, see
“Save Final Value to Base Workspace”.

Tunable — Whether data object is tunable parameter
true or 1 (default) | false or 0

Whether the data object is a tunable parameter, specified as a numeric or logical 1 (true) or 0
(false). Only tunable parameters can be modified during simulation. This property applies only to
parameter data.

Data Specification

DataType — Type of data object
'Inherit: From definition in chart' (default) | 'double' | 'single' | 'int32' |
'uint32' | 'boolean' | ...

Type of the data object, specified as a character vector that depends on the Props.Type.Method
property of the data object:

• If the Props.Type.Method property of the data object is 'Inherit', the value of this property
is 'Inherit: From definition in chart' for local data and 'Inherit: Same as
Simulink' for input, output, and parameter data.

• If the Props.Type.Method property of the data object is 'Built-in', you can specify this
property with one of these options:

• 'double'
• 'single'
• 'int8'
• 'int16'
• 'int32'
• 'int64'
• 'uint8'
• 'uint16'
• 'uint32'
• 'uint64'
• 'boolean'
• 'string'
• 'ml' (Supported only in charts that use C as the action language)

• Otherwise, the Props.Type properties of the data object determine the value of this property.

For more information, see the section Add Data on page 1-0  in “Create Charts by Using the
Stateflow API” on page 1-19.

Props — Data specification properties
Stateflow.DataProps object

Data specification properties, specified as a Stateflow.DataProps object with these properties:

• Type.Method — Method for setting the type of the data object, specified as a character vector.

2 API Object Reference

2-40



• For local, input, output, or parameter data, use 'Inherited', 'Built-in', 'Bus Object',
'Enumerated', 'Expression', or 'Fixed point'.

• For constant data, use 'Built-in', 'Expression', or 'Fixed point'.
• For data store memory data, use 'Inherited'.

This property is equivalent to the Mode field of the Data Type Assistant in the Model Explorer and
the Data properties dialog box. For more information, see “Specify Type of Stateflow Data”.

• Type.BusObject — Name of the Simulink.Bus object that defines the data object, specified as
a character vector. This property applies only when the Type.Method property of the data object
is 'Bus Object'. For more information, see “Access Bus Signals Through Stateflow Structures”.

• Type.EnumType — Name of the enumerated type that defines the data object, specified as a
character vector. This property applies only when the Type.Method property of the data object is
'Enumerated'. For more information, see “Reference Values by Name by Using Enumerated
Data”.

• Type.Expression — Expression that evaluates to the data type of the data object, specified as a
character vector. This property applies only when the Type.Method property of the data object is
'Expression'. For more information, see “Specify Data Properties by Using MATLAB
Expressions”.

• Type.Signed — Signedness, specified as a numeric or logical 1 (true) or 0 (false). This
property applies only when the Type.Method property of the data object is 'Fixed point'. For
more information, see “Fixed-Point Data in Stateflow Charts”.

• Type.WordLength — Word length, in bits, specified as a character vector. This property applies
only when the Type.Method property of the data object is 'Fixed point'. For more
information, see “Fixed-Point Data in Stateflow Charts”.

• Type.Fixpt.ScalingMode — Method for scaling the fixed-point data object, specified as
'Binary point', 'Slope and bias', or 'None'. This property applies only when the
Type.Method property of the data object is 'Fixed point'. For more information, see “Fixed-
Point Data in Stateflow Charts”.

• Type.Fixpt.FractionLength — Fraction length, in bits, specified as a character vector. This
property applies only when the Type.Method property is 'Fixed point' and the
Type.Fixpt.ScalingMode property is 'Binary point'.

• Type.Fixpt.Slope — Slope, specified as a character vector. This property applies only when the
Type.Method property is 'Fixed point' and the Type.Fixpt.ScalingMode property is
'Slope and bias'.

• Type.Fixpt.Bias — Bias, specified as a character vector. This property applies only when the
Type.Method property is 'Fixed point' and the Type.Fixpt.ScalingMode property is
'Slope and bias'.

• Type.Fixpt.Lock — Whether to prevent replacement of the fixed-point type with an autoscaled
type chosen by the Fixed-Point Tool (Fixed-Point Designer), specified as a numeric or logical 1
(true) or 0 (false). This property applies only when the Type.Method property of the data
object is 'Fixed point'.

• Array.Size — Size of the data object, specified as a character vector. For more information, see
“Specify Size of Stateflow Data”.

• Array.IsDynamic — Whether the data object has variable size, specified as a numeric or logical
1 (true) or 0 (false). This property applies only to input, output, and local data and is equivalent
to the Variable Size check box in the Property Inspector, the Model Explorer, or the Data
properties dialog box. Use the Size property to specify the maximum size for the data. For more
information, see “Declare Variable-Size Data in Stateflow Charts”.

 Stateflow.Data

2-41



• Array.FirstIndex — Index for the first element of the array data object, specified as a
character vector. This property applies only to array data in charts that use C as the action
language. For more information, see “Save Final Value to Base Workspace”.

• Complexity — Whether the data object accepts complex values, specified as 'On' or 'Off'. For
more information, see “Complex Data in Stateflow Charts”.

• InitialValue — Initial value, specified as a character vector. For more information, see “Initial
Value”.

• Range.Minimum — Minimum value, specified as a character vector. For more information, see
“Limit Range”.

• Range.Maximum — Maximum value, specified as a character vector. For more information, see
“Limit Range”.

• ResolveToSignalObject — Whether the data object resolves to a Simulink.Signal object
that you define in the model or base workspace, specified as a numeric or logical 1 (true) or 0
(false). For more information, see “Resolve Data Properties from Simulink Signal Objects”.

• Unit.Name — Unit of measurement, specified as a character vector. This property applies only to
input and output data. For more information, see “Specify Units for Stateflow Data”.

CompiledSize — Data size as determined by compiler
'' (default) | character vector

This property is read-only.

Data size as determined by the compiler, specified as a character vector.

CompiledType — Data type as determined by compiler
'unknown' (default) | character vector

This property is read-only.

Data type as determined by the compiler, specified as a character vector.

Active State Output

OutputState — State or chart monitored by data object
[] (default) | Stateflow.AtomicSubchart object | Stateflow.Chart |
Stateflow.SimulinkBasedState object | Stateflow.State object |
Stateflow.StateTransitionTableChart object

This property is read-only.

State or chart monitored by the data object, specified as an empty array or a
Stateflow.AtomicSubchart, Stateflow.Chart, Stateflow.SimulinkBasedState,
Stateflow.State, or Stateflow.StateTransitionTableChart object. For more information,
see “Monitor State Activity Through Active State Data”.

Signal Logging

LoggingInfo — Signal logging properties
Stateflow.SigLoggingInfo object

Signal logging properties for the data object, specified as a Stateflow.SigLoggingInfo object
with these properties:

2 API Object Reference

2-42



• DataLogging — Whether to enable signal logging, specified as a numeric or logical 1 (true) or 0
(false).

• DecimateData — Whether to limit the amount of logged data, specified as a numeric or logical 1
(true) or 0 (false).

• Decimation — Decimation interval, specified as an integer scalar. This property applies only
when the DecimateData property is true.

• LimitDataPoints — Whether to limit the number of data points to log, specified as a numeric or
logical 1 (true) or 0 (false).

• MaxPoints — Maximum number of data points to log, specified as an integer scalar. This property
applies only when the LimitDataPoints property is true.

• NameMode — Source of the signal name, specified as 'SignalName' or 'Custom'.
• LoggingName — Custom signal name, specified as a character vector. This property applies only

when the NameMode property is 'Custom'.

For more information, see “Log Simulation Output for States and Data”.
Example: data.LoggingInfo.DataLogging = true;

Debugging

Debug — Debugger properties
Stateflow.DataDebug object

Debugger properties for the data object, specified as a Stateflow.DataDebug object with this
property:

• Watch — Whether to track the value of the data object in the Breakpoints and Watch window,
specified as a numeric or logical 1 (true) or 0 (false). For more information, see “View Data in
the Breakpoints and Watch Window”.

Example: data.Debug.Watch = true;

TestPoint — Whether to set data object as test point
false or 0 (default) | true or 1

Whether to set the data object as a test point, specified as a numeric or logical 1 (true) or 0 (false).
For more information, see “Monitor Test Points in Stateflow Charts”.

Hierarchy

Machine — Machine that contains data object
Stateflow.Machine object

This property is read-only.

Machine that contains the data object, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the data object in the model hierarchy, specified as a character vector.

 Stateflow.Data

2-43



Identification

Description — Description
'' (default) | character vector

Description for the data object, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the data object, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the data object, specified as data of any type.

SSIdNumber — Session-independent identifier
scalar

This property is read-only.

Session-independent identifier, specified as an integer scalar. Use this property to distinguish the
data object from other objects in the model.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Unlike SSIdNumber, the value of this property is
reassigned every time you start a new MATLAB session and may be recycled after an object is
deleted.

Object Functions
getParent Identify parent of object
dialog Open properties dialog box
view Display object in editing environment

Examples

Add Data to Chart

Add a data object to the chart ch. Specify its name, scope, and data type.

data = Stateflow.Data(ch);
data.Name = 'x';
data.Scope = 'Input';

2 API Object Reference

2-44



data.Props.Type.Method = 'Built-in';
data.DataType = 'single';

Compatibility Considerations
Stateflow no longer supports creating machine-parented data
Errors starting in R2021b

Starting in R2021b, the Stateflow.Data function does not support arguments of type
Stateflow.Machine. The presence of machine-parented data in a model prevents the reuse of
generated code and other code optimizations. This type of data is also incompatible with many
Simulink and Stateflow features. To make Stateflow data accessible to other charts and blocks in a
model, use data store memory. For more information, see “Best Practices for Using Data in Charts”
and “Access Data Store Memory from a Chart”.

See Also
Stateflow.Box | Stateflow.Chart | Stateflow.EMFunction | Stateflow.Function |
Stateflow.SimulinkBasedState | Stateflow.SLFunction | Stateflow.State |
Stateflow.TruthTable

Topics
“Overview of the Stateflow API” on page 1-2
“Add Stateflow Data”
“Set Data Properties”
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.Data

2-45



Stateflow.DataArray
Array properties for data and messages

Description
Use a Stateflow.DataArray object to specify the array properties for a data object or message.

Creation
Each data object and message has its own Stateflow.DataArray object. To access the
Stateflow.DataArray object, use the Props.Array property for the Stateflow.Data or
Stateflow.Message object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Size — Size
'-1' (default) | character vector

Size of the data object or message data, specified as a character vector. For more information, see
“Specify Size of Stateflow Data”.

IsDynamic — Whether data object has variable size
false or 0 (default) | true or 1

Whether the data object has variable size, specified as a numeric or logical 1 (true) or 0 (false).
This property applies only to input, output, and local data and is equivalent to the Variable Size
check box in the Property Inspector, the Model Explorer, or the Data properties dialog box. Use the
Size property to specify the maximum size for the data. For more information, see “Declare Variable-
Size Data in Stateflow Charts”.

FirstIndex — Index for first element of array
character vector

Index for the first element of the array data object, specified as a character vector. This property
applies only to array data in charts that use C as the action language. For more information, see
“Save Final Value to Base Workspace”.

Examples

2 API Object Reference

2-46



Specify Size of Data

Access the Stateflow.Props and Stateflow.DataArray objects for the Stateflow.Data object
x.

properties = x.Props;
array = properties.Array;

Specify the size of the data object.

array.size = "[2 3]";

See Also
Stateflow.Data | Stateflow.Message

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2
“Specify Size of Stateflow Data”
“Declare Variable-Size Data in Stateflow Charts”
“Save Final Value to Base Workspace”

Introduced before R2006a

 Stateflow.DataArray

2-47



Stateflow.DataDebug
Debugger properties for data

Description
Use a Stateflow.DataDebug object to specify the debugger properties for a data object.

Creation
Each data object has its own Stateflow.DataDebug object. To access the Stateflow.DataDebug
object, use the Debug property for the Stateflow.Data object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Watch — Whether to track data object
false or 0 (default) | true or 1

Whether to track the value of the data object in the Breakpoints and Watch window, specified as a
numeric or logical 1 (true) or 0 (false). For more information, see “View Data in the Breakpoints
and Watch Window”.

Examples

Add Data to Breakpoints and Watch Window

Access the Stateflow.DataDebug object for the Stateflow.Data object x.

debug = x.Debug;

Add the data object to the Breakpoints and Watch window.

debug.Watch = true;

See Also
Stateflow.Data

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2
“View Data in the Breakpoints and Watch Window”

2 API Object Reference

2-48



Introduced before R2006a

 Stateflow.DataDebug

2-49



Stateflow.DataProps
Data specification properties for data and messages

Description
Use a Stateflow.DataProps object to specify the data properties for a data object or message.

Creation
Each data object and message has its own Stateflow.DataProps object. To access the
Stateflow.DataProps object, use the Props property for the Stateflow.Data or
Stateflow.Message object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Type — Data type properties
Stateflow.DataType object

Data type properties, specified as a Stateflow.DataType object with these properties:

• Method — Method for setting the type of the data object or message, specified as a character
vector.

• For local, input, output, or parameter data, use 'Inherited', 'Built-in', 'Bus Object',
'Enumerated', 'Expression', or 'Fixed point'.

• For constant data, use 'Built-in', 'Expression', or 'Fixed point'.
• For data store memory data, use 'Inherited'.
• For messages, use 'Inherited', 'Built-in', 'Bus Object', 'Enumerated',

'Expression', or 'Fixed point'.

This property is equivalent to the Mode field of the Data Type Assistant in the Model Explorer and
the Data properties dialog box. For more information, see “Specify Type of Stateflow Data”.

• BusObject — Name of the Simulink.Bus object that defines the data object or message data,
specified as a character vector. This property applies only when the Method property of the data
object is 'Bus Object'. For more information, see “Access Bus Signals Through Stateflow
Structures”.

• EnumType — Name of the enumerated type that defines the data object or message data, specified
as a character vector. This property applies only when the Method property of the data object is
'Enumerated'. For more information, see “Reference Values by Name by Using Enumerated
Data”.

2 API Object Reference

2-50



• Expression — Expression that evaluates to the data type of the data object or message data,
specified as a character vector. This property applies only when the Method property of the data
object is 'Expression'. For more information, see “Specify Data Properties by Using MATLAB
Expressions”.

• Signed — Signedness, specified as a numeric or logical 1 (true) or 0 (false). This property
applies only when the Method property of the data object is 'Fixed point'. For more
information, see “Fixed-Point Data in Stateflow Charts”.

• WordLength — Word length, in bits, specified as a character vector. This property applies only
when the Method property of the data object is 'Fixed point'. For more information, see
“Fixed-Point Data in Stateflow Charts”.

• Fixpt.ScalingMode — Method for scaling the fixed-point data object or message data, specified
as 'Binary point', 'Slope and bias', or 'None'. This property applies only when the
Method property of the data object is 'Fixed point'. For more information, see “Fixed-Point
Data in Stateflow Charts”.

• Fixpt.FractionLength — Fraction length, in bits, specified as a character vector. This property
applies only when the Method property is 'Fixed point' and the Fixpt.ScalingMode
property is 'Binary point'.

• Fixpt.Slope — Slope, specified as a character vector. This property applies only when the
Method property is 'Fixed point' and the Fixpt.ScalingMode property is 'Slope and
bias'.

• Fixpt.Bias — Bias, specified as a character vector. This property applies only when the Method
property is 'Fixed point' and the Fixpt.ScalingMode property is 'Slope and bias'.

• Fixpt.Lock — Whether to prevent replacement of the fixed-point type with an autoscaled type
chosen by the Fixed-Point Tool (Fixed-Point Designer), specified as a numeric or logical 1 (true)
or 0 (false). This property applies only when the Method property of the data object is 'Fixed
point'.

Array — Array properties
Stateflow.DataArray object

Array properties, specified as a Stateflow.DataArray object with these properties:

• Size — Size of the data object or message data, specified as a character vector. For more
information, see “Specify Size of Stateflow Data”.

• IsDynamic — Whether the data object has variable size, specified as a numeric or logical 1
(true) or 0 (false). This property applies only to input, output, and local data and is equivalent
to the Variable Size check box in the Property Inspector, the Model Explorer, or the Data
properties dialog box. Use the Size property to specify the maximum size for the data. For more
information, see “Declare Variable-Size Data in Stateflow Charts”.

• FirstIndex — Index for the first element of the array data object, specified as a character vector.
This property applies only to array data in charts that use C as the action language. For more
information, see “Save Final Value to Base Workspace”.

Complexity — Whether data object or message accepts complex values
'Off' (default) | 'On'

Whether the data object or message accepts complex values, specified as 'On' or 'Off'. For more
information, see “Complex Data in Stateflow Charts”.

InitialValue — Initial value
'' (default) | character vector

 Stateflow.DataProps

2-51



Initial value, specified as a character vector.

Range — Range of acceptable values
Stateflow.DataRange object

Range of acceptable values for the data object, specified as a Stateflow.DataRange object with
these properties:

• Minimum — Minimum value, specified as a character vector.
• Maximum — Maximum value, specified as a character vector.

This property does not apply to message data. For more information, see “Limit Range”.

ResolveToSignalObject — Whether data object resolves to Simulink.Signal object
false or 0 (default) | true or 1

Whether the data object resolves to a Simulink.Signal object that you define in the model or base
workspace, specified as a numeric or logical 1 (true) or 0 (false). This property does not apply to
message data. For more information, see “Resolve Data Properties from Simulink Signal Objects”.

Unit — Unit of measurement for input and output data
Stateflow.Unit object

Unit of measurement for input and output data objects, specified as a Stateflow.Unit object with
this property:

• Name — Name of the unit of measurement, specified as a character vector.

This property applies only to input and output data. For more information, see “Specify Units for
Stateflow Data”.

Examples

Specify Fixed-Point Data Type

Access the Stateflow.Props, Stateflow.DataType, and Stateflow.FixptType objects for the
Stateflow.Data object x.

properties = x.Props;
type = properties.Type;
fixpt = type.Fixpt;

Specify the fixed-point properties.

type.Method = 'Fixed point';
type.Signed = true;
type.WordLength = '5';
fixpt.ScalingMode = 'Binary point';
fixpt.FractionLength = '2';

Verify the data type.

x.DataType

2 API Object Reference

2-52



ans =
    'fixdt(1,5,2)'

Specify Size of Data

Access the Stateflow.Props and Stateflow.DataArray objects for the Stateflow.Data object
x.

properties = x.Props;
array = properties.Array;

Specify the size of the data object.

array.size = "[2 3]";

Specify Range of Values for Data

Access the Stateflow.Props and Stateflow.DataRanges objects for the Stateflow.Data
object x.

properties = x.Props;
range = properties.Range;

Specify the minimum and maximum acceptable values.

range.Minimum = "0";
range.Maximum = "1024";

Specify Units for Data

Access the Stateflow.Props and Stateflow.Unit objects for the Stateflow.Data object x.

properties = x.Props;
unit = properties.Unit;

Specify the units as meters.

unit.Name = "m";

See Also
Stateflow.Data | Stateflow.Message

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.DataProps

2-53



Stateflow.DataRange
Range of acceptable values for data

Description
Use a Stateflow.DataRange object to specify the range of acceptable values for a data object. For
more information, see “Limit Range”.

Creation
Each data object and message has its own Stateflow.DataRange object. However, the object only
applies for Stateflow.Data objects. To access the Stateflow.DataRange object, use the
Props.Range property for the Stateflow.Data object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Minimum — Minimum value
'' (default) | character vector

Minimum value, specified as a character vector.

Maximum — Maximum value
'' (default) | character vector

Maximum value, specified as a character vector.

Examples

Specify Range of Values for Data

Access the Stateflow.Props and Stateflow.DataRanges objects for the Stateflow.Data
object x.

properties = x.Props;
range = properties.Range;

Specify the minimum and maximum acceptable values.

2 API Object Reference

2-54



range.Minimum = "0";
range.Maximum = "1024";

See Also
Stateflow.Data

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.DataRange

2-55



Stateflow.DataType
Data type properties for data and messages

Description
Use a Stateflow.DataType object to specify the data type properties for a data object or message.

Creation
Each data object and message has its own Stateflow.DataType object. To access the
Stateflow.DataType object, use the Props.Type property for the Stateflow.Data or
Stateflow.Message object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Method — Method for setting data type
'Inherited' (default) | 'Built-in' | 'Bus Object' | 'Enumerated' | 'Expression' | 'Fixed
point'

Method for setting the type of the data object or message, specified as a character vector.

• For local, input, output, or parameter data, use 'Inherited', 'Built-in', 'Bus Object',
'Enumerated', 'Expression', or 'Fixed point'.

• For constant data, use 'Built-in', 'Expression', or 'Fixed point'.
• For data store memory data, use 'Inherited'.
• For messages, use 'Inherited', 'Built-in', 'Bus Object', 'Enumerated',

'Expression', or 'Fixed point'.

This property is equivalent to the Mode field of the Data Type Assistant in the Model Explorer and
the Data properties dialog box. For more information, see “Specify Type of Stateflow Data”.

BusObject — Name of Simulink.Bus object
'' (default) | character vector

Name of the Simulink.Bus object that defines the data object or message data, specified as a
character vector. This property applies only when the Method property of the data object is 'Bus
Object'. For more information, see “Access Bus Signals Through Stateflow Structures”.

EnumType — Name of enumerated type
'' (default) | character vector

2 API Object Reference

2-56



Name of the enumerated type that defines the data object or message data, specified as a character
vector. This property applies only when the Method property of the data object is 'Enumerated'.
For more information, see “Reference Values by Name by Using Enumerated Data”.

Expression — Expression that evaluates to data type
'' (default) | character vector

Expression that evaluates to the data type of the data object or message data, specified as a
character vector. This property applies only when the Method property of the data object is
'Expression'. For more information, see “Specify Data Properties by Using MATLAB Expressions”.

Signed — Signedness
true or 1 (default) | false or 0

Signedness, specified as a numeric or logical 1 (true) or 0 (false). This property applies only when
the Method property of the data object is 'Fixed point'. For more information, see “Fixed-Point
Data in Stateflow Charts”.

WordLength — Word length
'16' (default) | character vector

Word length, in bits, specified as a character vector. This property applies only when the Method
property of the data object is 'Fixed point'. For more information, see “Fixed-Point Data in
Stateflow Charts”.

Fixpt — Fixed-point properties
Stateflow.FixptType object

Fixed-point properties, specified as a Stateflow.FixptType object with these properties:

• ScalingMode — Method for scaling the fixed-point data object or message data, specified as
'Binary point', 'Slope and bias', or 'None'.

• FractionLength — Fraction length, in bits, specified as a character vector. This property applies
only when the ScalingMode property is 'Binary point'.

• Slope — Slope, specified as a character vector. This property applies only when the
ScalingMode property is 'Slope and bias'.

• Bias — Bias, specified as a character vector. This property applies only when the ScalingMode
property is 'Slope and bias'.

• Lock — Whether to prevent replacement of the fixed-point type with an autoscaled type chosen by
the Fixed-Point Tool (Fixed-Point Designer), specified as a numeric or logical 1 (true) or 0
(false).

This property applies only when the Method property of the data object is 'Fixed point'. For more
information, see “Fixed-Point Data in Stateflow Charts”.

Examples

Specify Fixed-Point Data Type

Access the Stateflow.Props, Stateflow.DataType, and Stateflow.FixptType objects for the
Stateflow.Data object x.

 Stateflow.DataType

2-57



properties = x.Props;
type = properties.Type;
fixpt = type.Fixpt;

Specify the fixed-point properties.

type.Method = 'Fixed point';
type.Signed = true;
type.WordLength = '5';
fixpt.ScalingMode = 'Binary point';
fixpt.FractionLength = '2';

Verify the data type.

x.DataType

ans =
    'fixdt(1,5,2)'

See Also
Stateflow.Data | Stateflow.Message

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

2 API Object Reference

2-58



Stateflow.Editor
Graphical aspects of a chart or state transition table

Description
Use the Stateflow.Editor object to access the graphical aspects of a Stateflow chart or state
transition table. You can use the Stateflow.Editor object to control the position, size, and
magnification level of the Stateflow Editor window.

Creation
Each chart has its own Stateflow.Editor object. When you create a chart, an
Stateflow.Editor object is automatically created for it. To access the Stateflow.Editor object,
use the Editor property for the chart. For example, if ch is a Stateflow.Chart or
Stateflow.StateTransitionTableChart object, enter:

editor = ch.Editor;

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

WindowPosition — Position and size of window
[left top width height]

Position and size of the Stateflow editor window, specified as a four-element numeric vector of the
form [left top width height].

ZoomFactor — Magnification level
scalar

Magnification level of the chart or state transition table in the editor, specified as a scalar value
between 0.5 and 10. A value of 1 corresponds to a magnification of 100%.

Object Functions
zoomIn Zoom in on Stateflow chart
zoomOut Zoom out on Stateflow chart

Examples

Zoom in on Stateflow Chart

Increase the magnification level of a nonempty chart ch.

 Stateflow.Editor

2-59



editor = ch.Editor;
zoomIn(editor)

If the magnification level for the chart was initially 100%, this command increases it to 130%.

Zoom out on Stateflow Chart

Decrease the magnification level of a nonempty chart ch.

editor = ch.Editor;
zoomOut(editor)

If the magnification level for the chart was initially 100%, this command decreases it to 76.9%.

Set Zoom Factor

Set the ZoomFactor property for a nonempty chart ch to an absolute magnification level of 150%.

editor = ch.Editor;
editor.ZoomFactor = 1.5;

See Also
Stateflow.Chart | Stateflow.StateTransitionTableChart

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

2 API Object Reference

2-60



Stateflow.EMChart
Stateflow interface to MATLAB Function block

Description
Use Stateflow.EMChart objects to configure MATLAB Function blocks through the Stateflow
programmatic interface.

MATLAB Function blocks define custom functionality in Simulink models. Use these blocks when:

• You have an existing MATLAB function that models custom functionality, or it would be easy for
you to create such a function.

• Your model requires custom functionality that is not or cannot be captured in the Simulink
graphical language.

• You find it easier to model custom functionality by using a MATLAB function than by using a
Simulink block diagram.

• The custom functionality that you want to model does not include continuous or discrete dynamic
states. To model dynamic states, use S-functions.

For more information, see “Implementing MATLAB Functions Using Blocks” (Simulink) and “Create
Custom Functionality Using MATLAB Function Blocks” (Simulink).

Tip You can also configure the properties of a MATLAB Function block programmatically by using a
MATLABFunctionConfiguration object. This object provides a direct interface to the properties of
a MATLAB Function block. For more information, see “Configure MATLAB Function Blocks
Programmatically” (Simulink).

Creation
Each MATLAB Function block has its own Stateflow.EMChart object. When you add a MATLAB
Function block to a Simulink model, a Stateflow.EMChart object is automatically created for it.
For example, you can use the function add_block:

add_block('simulink/User-Defined Functions/MATLAB Function', ...
   'myModel/MATLAB Function')

Then, to access the Stateflow.EMChart object, call the find function for the Simulink.Root
object:

rt = sfroot;
block = find(rt,'-isa','Stateflow.EMChart', ...
    'Path','myModel/MATLAB Function')

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API

 Stateflow.EMChart

2-61



objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Content

Name — Name of MATLAB Function block
'MATLAB Function' (default) | character vector

Name of the MATLAB Function block, specified as a character vector.

Script — Code for MATLAB Function block
character vector

Code for the MATLAB Function block, specified as a character vector. To enter multiple lines of code,
you can:

• Call the MATLAB function sprintf and use \n to insert newline characters:

str = sprintf('function y=f(x)\ny=x+1;\nend');
block.Script = str;

• Enter a concatenated text expression that uses the integer 10 as the ASCII equivalent of a newline
character:

str = ['function y=f(x)',10, ...
    'y=x+1;',10, ...
    'end'];
block.Script = str;

SupportVariableSizing — Whether MATLAB Function block supports variable-size data
true or 1 (default) | false or 0

Whether the MATLAB Function block supports variable-size data, specified as a numeric or logical 1
(true) or 0 (false). Only variable-size data can change dimension during simulation. For more
information, see “Declare Variable-Size Inputs and Outputs” (Simulink).

AllowDirectFeedthrough — Whether MATLAB Function block supports direct feedthrough
semantics
true or 1 (default) | false or 0

Whether the MATLAB Function block supports direct feedthrough semantics, specified as a numeric
or logical 1 (true) or 0 (false). For more information, see “Allow direct feedthrough” (Simulink).

VectorOutputs1D — Whether MATLAB Function block outputs column vectors as one-
dimensional data
false or 0 (default) | true or 1

Whether the MATLAB Function block outputs column vectors as one-dimensional data, specified as a
numeric or logical 0 (false) or 1 (true). For more information, see “Interpret output column vectors
as one-dimensional data” (Simulink).

Interface

Inputs — Input arguments
array of Stateflow.Data objects

This property is read-only.

2 API Object Reference

2-62



Input arguments of the MATLAB Function block, specified as an array of Stateflow.Data objects.
The value of this property depends on the inputs defined in the Script property for the block.

Outputs — Output arguments
array of Stateflow.Data objects

This property is read-only.

Output arguments of the MATLAB Function block, specified as an array of Stateflow.Data objects.
The value of this property depends on the outputs defined in the Script property for the block.

Discrete and Continuous-Time Semantics

ChartUpdate — Activation method for MATLAB Function block
'INHERITED' (default) | 'CONTINUOUS' | 'DISCRETE'

Activation method for the MATLAB Function block, specified as 'CONTINUOUS', 'DISCRETE', or
'INHERITED'. For more information, see “Update method” (Simulink).

SampleTime — Sample time for activating MATLAB Function block
'-1' (default) | character vector

Sample time for activating the MATLAB Function block, specified as a character vector. This property
applies only when the ChartUpdate property for the MATLAB function is 'DISCRETE'.

Integer and Fixed-Point Data

SaturateOnIntegerOverflow — Whether data saturates on integer overflow
true or 1 (default) | false or 0

Whether the data in the MATLAB Function block saturates on integer overflow, specified as a numeric
or logical 1 (true) or 0 (false). When this property is disabled, the data in the function wraps on
integer overflow. For more information, see “Saturate on integer overflow” (Simulink).

TreatAsFi — Inherited Simulink signals to treat as fi objects
'Fixed-point' (default) | 'Fixed-point & Integer'

Inherited Simulink signals to treat as Fixed-Point Designer fi objects, specified as one of these
values:

• 'Fixed-point' — The MATLAB Function block treats all fixed-point inputs as fi objects.
• 'Fixed-point & Integer' — The MATLAB Function block treats all fixed-point and integer

inputs as fi objects.

EmlDefaultFimath — Default fimath properties
'Same as MATLAB Default' (default) | 'Other:UserSpecified'

Default fimath properties for the MATLAB Function block, specified as one of these values:

• 'Same as MATLAB Default' — Use the same fimath properties as the current default fimath
object.

• 'Other:UserSpecified' — Use the InputFimath property to specify the default fimath
object.

 Stateflow.EMChart

2-63



InputFimath — Default fimath object
character vector

Default fimath object, specified as a character vector. When the EmlDefaultFimath property for
the MATLAB Function block is 'Other:UserSpecified', you can use this property to:

• Enter an expression that constructs a fimath object.
• Enter the variable name for a fimath object in the MATLAB or model workspace.

Hierarchy

Machine — Machine that contains MATLAB Function block
Stateflow.Machine object

This property is read-only.

Machine that contains the MATLAB Function block, specified as a Stateflow.Machine object.

Path — Location of MATLAB Function block in model hierarchy
character vector

This property is read-only.

Location of the MATLAB Function block in the model hierarchy, specified as a character vector.

Dirty — Whether MATLAB Function block has changed
true or 1 | false or 0

Whether the MATLAB Function block has changed after being opened or saved, specified as a
numeric or logical 1 (true) or 0 (false).

Locked — Whether MATLAB Function block is locked
false or 0 (default) | true or 1

Whether the MATLAB Function block is locked, specified as a numeric or logical 1 (true) or 0
(false). Enable this property to prevent changes in the MATLAB Function block.

Iced — Whether MATLAB Function block is locked
false or 0 (default) | true or 1

This property is read-only.

Whether the MATLAB Function block is locked, specified as a numeric or logical 1 (true) or 0
(false). This property is equivalent to the property Locked, but is used internally to prevent
changes in the MATLAB Function block during simulation.

Identification

Description — Description
'' (default) | character vector

Description for the MATLAB Function block, specified as a character vector.

Document — Document link
'' (default) | character vector

2 API Object Reference

2-64



Document link for the MATLAB Function block, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the MATLAB Function block, specified as data of any type.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Use this property to distinguish the MATLAB
Function block from other objects in the model. The value of this property is reassigned every time
you start a new MATLAB session and may be recycled after an object is deleted.

Object Functions
find Identify specified objects in hierarchy
getChildren Identify children of object
dialog Open properties dialog box
view Display object in editing environment

Examples

Program MATLAB Function Block

Access the Stateflow.EMChart object for a MATLAB Function block.

block = find(sfroot,'-isa','Stateflow.EMChart');

Store the MATLAB code to calculate the mean and standard deviation for a vector of values as a
character vector.

str = ['function [mean,stdev] = stats(vals)',10, ...
'% Calculates a statistical mean and a standard',10, ...
'% deviation for the values in vals.',10,10, ...
'len = length(vals);',10, ...
'mean = avg(vals,len);',10, ...
'stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);',10, ...
'plot(vals,''-+'');',10,10,...
'function mean = avg(array,size)',10, ...
'mean = sum(array)/size;'];

Populate the block with code by modifying the Script property of the corresponding
Stateflow.EMChart object.

block.Script = str;

Open the function in the MATLAB Function Block Editor.

view(block)

The editor shows this code.

 Stateflow.EMChart

2-65



function [mean,stdev] = stats(vals)
% Calculates a statistical mean and a standard
% deviation for the values in vals.

len = length(vals);
mean = avg(vals,len);
stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);
plot(vals,'-+');

function mean = avg(array,size)
mean = sum(array)/size;

Import Code from MATLAB Function

Open a Simulink model called myModel.

open_system('myModel')

Add a MATLAB Function block to myModel.

blockPath = 'myModel/My Function';
add_block('simulink/User-Defined Functions/MATLAB Function',blockPath)

Populate the block with code from the MATLAB function myFunction.m.

block = find(sfroot,'-isa','Stateflow.EMChart', ...
    'Path',newBlockPath);
block.Script = fileread('myFunction.m');

Find Number of MATLAB Function Blocks in Model

Open a Simulink model called myModel.

open_system('myModel')

Access the Simulink.Root object at the top level of the Stateflow hierarchy.

rt = sfroot;

Find the MATLAB Function blocks in the model.

blocks = find(rt,'-isa','Stateflow.EMChart');

Count the number of blocks.

numel(blocks);

See Also
Blocks
MATLAB Function

Functions
sfroot | add_block | fileread | numel

2 API Object Reference

2-66



Objects
MATLABFunctionConfiguration

Topics
“Overview of the Stateflow API” on page 1-2
“Implementing MATLAB Functions Using Blocks” (Simulink)
“Create Custom Functionality Using MATLAB Function Blocks” (Simulink)
“Specify MATLAB Function Block Properties” (Simulink)
“List of Stateflow API Properties” on page 4-2

Introduced in R2011a

 Stateflow.EMChart

2-67



Stateflow.EMFunction
MATLAB function in chart, state, box, or function

Description
Use Stateflow.EMFunction objects to create MATLAB functions for coding algorithms that are
more easily expressed by using MATLAB code instead of the graphical Stateflow constructs. Typical
applications include:

• Matrix-oriented calculations
• Data analysis and visualization

You can call a MATLAB function in the actions of states and transitions. For more information, see
“Reuse MATLAB Code by Defining MATLAB Functions”.

Creation

Syntax
function = Stateflow.EMFunction(parent)

Description

function = Stateflow.EMFunction(parent) creates a Stateflow.EMFunction object in a
parent chart, state, box, or function.

Input Arguments

parent — Parent for new MATLAB function
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

Parent for the new MATLAB function, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.Function
• Stateflow.State

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

2 API Object Reference

2-68



Content

Name — Name of MATLAB function
'' (default) | character vector

Name of the MATLAB function, specified as a character vector.

LabelString — Label for MATLAB function
'?' (default) | character vector

Label for the MATLAB function, specified as a character vector.

Script — Code for MATLAB function
character vector

Code for the MATLAB function, specified as a character vector. To enter multiple lines of code, you
can:

• Call the MATLAB function sprintf and use the escape sequence \n to insert newline characters:

str = sprintf('function y=f(x)\ny=x+1;\nend');
function.Script = str;

• Enter a concatenated text expression that uses the integer 10 as the ASCII equivalent of a newline
character:

str = ['function y=f(x)',10, ...
    'y=x+1;',10, ...
    'end'];
function.Script = str;

IsExplicitlyCommented — Whether to comment out MATLAB function
false or 0 (default) | true or 1

Whether to comment out the MATLAB function, specified as a numeric or logical 1 (true) or 0
(false). Setting this property to true is equivalent to right-clicking the MATLAB function and
selecting Comment Out. For more information, see “Commenting Stateflow Objects in a Chart”.

IsImplicitlyCommented — Whether MATLAB function is implicitly commented out
true or 1 | false or 0

This property is read-only.

Whether the MATLAB function is implicitly commented out, specified as a numeric or logical 1 (true)
or 0 (false). The MATLAB function is implicitly commented out when you comment out a state, box,
or function that contains it.

CommentText — Comment text
'' (default) | character vector

Comment text for the MATLAB function, specified as a character vector. This property applies only
when the IsExplicitlyCommented property is true. In the Stateflow Editor, when you point to the
comment badge  on the MATLAB function, the text appears as a tooltip. When you set the
IsExplicitlyCommented property to false, the value of CommentText reverts to ''.

 Stateflow.EMFunction

2-69



Graphical Appearance

Position — Position and size of MATLAB function
[0 0 90 60] (default) | [left top width height]

Position and size of the MATLAB function, specified as a four-element numeric vector of the form
[left top width height].

BadIntersection — Whether function intersects a box, state, or function
true or 1 | false or 0

This property is read-only.

Whether the MATLAB function graphically intersects a box, state, or function, specified as a numeric
or logical 1 (true) or 0 (false).

FontSize — Font size for MATLAB function label
scalar

Font size for the MATLAB function label, specified as a scalar. The StateFont.Size property of the
chart that contains the graphical function sets the initial value of this property.

Integer and Fixed-Point Data

SaturateOnIntegerOverflow — Whether data saturates on integer overflow
true or 1 (default) | false or 0

Whether the data in the MATLAB function saturates on integer overflow, specified as a numeric or
logical 1 (true) or 0 (false). When this property is disabled, the data in the function wraps on
integer overflow. For more information, see “Handle Integer Overflow for Chart Data”.

This property applies only when the ActionLanguage of the chart that contains the function is 'C'.
Otherwise, the behavior of data depends on the value of the SaturateOnIntegerOverflow
property for the chart.

EmlDefaultFimath — Default fimath properties
'Same as MATLAB Default' (default) | 'Other:UserSpecified'

Default fimath properties for the MATLAB function, specified as one of these values:

• 'Same as MATLAB Default' — Use the same fimath properties as the current default fimath
object.

• 'Other:UserSpecified' — Use the InputFimath property to specify the default fimath
object.

This property applies only when the ActionLanguage of the chart that contains the function is 'C'.
Otherwise, the behavior of data depends on the value of the EmlDefaultFimath property for the
chart.

InputFimath — Default fimath object
character vector

Default fimath object, specified as a character vector. When the EmlDefaultFimath property for
the MATLAB function is 'Other:UserSpecified', you can use this property to:

2 API Object Reference

2-70



• Enter an expression that constructs a fimath object.
• Enter the variable name for a fimath object in the MATLAB or model workspace.

This property applies only when the ActionLanguage of the chart that contains the function is 'C'.
Otherwise, the behavior of data depends on the value of the InputFimath property for the chart.

Code Generation

InlineOption — Appearance in generated code
'Auto' (default) | 'Function' | 'Inline'

Appearance of the MATLAB function in generated code, specified as one of these values:

• 'Auto' — An internal calculation determines the appearance of the function in generated code.
• 'Function' — The function is implemented as a separate C function.
• 'Inline' — Calls to the function are replaced by code.

For more information, see “Inline State Functions in Generated Code” (Simulink Coder).

Hierarchy

Chart — Chart that contains MATLAB function
Stateflow.Chart object

This property is read-only.

Chart that contains the MATLAB function, specified as a Stateflow.Chart object.

Subviewer — Subviewer for MATLAB function
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

This property is read-only.

Subviewer for the MATLAB function, specified as a Stateflow.Chart, Stateflow.State,
Stateflow.Box, or Stateflow.Function object. The subviewer is the chart or subchart where
you can graphically view the MATLAB function.

Machine — Machine that contains MATLAB function
Stateflow.Machine object

This property is read-only.

Machine that contains the MATLAB function, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the MATLAB function in the model hierarchy, specified as a character vector.

 Stateflow.EMFunction

2-71



Identification

Description — Description
'' (default) | character vector

Description for the MATLAB function, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the MATLAB function, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the MATLAB function, specified as data of any type.

SSIdNumber — Session-independent identifier
scalar

This property is read-only.

Session-independent identifier, specified as an integer scalar. Use this property to distinguish the
MATLAB function from other objects in the model.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Unlike SSIdNumber, the value of this property is
reassigned every time you start a new MATLAB session and may be recycled after an object is
deleted.

Object Functions
find Identify specified objects in hierarchy
getChildren Identify children of object
getParent Identify parent of object
dialog Open properties dialog box
isCommented Determine if graphical object is commented out
view Display object in editing environment
highlight Highlight graphical object
fitToView Zoom in on graphical object

Examples

Add MATLAB Function to Chart

Add a MATLAB function in the chart ch. Set its label to '[y1,y2] = f(x1,x2,x3)'.

2 API Object Reference

2-72



function = Stateflow.EMFunction(ch);
function.LabelString = '[y1,y2] = f(x1,x2,x3)';

See Also
Stateflow.Box | Stateflow.Chart | Stateflow.Function | Stateflow.State

Topics
“Overview of the Stateflow API” on page 1-2
“Reuse MATLAB Code by Defining MATLAB Functions”
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.EMFunction

2-73



Stateflow.ChartBreakpoints
Breakpoint properties for chart or state transition table

Description
Use a Stateflow.ChartBreakpoints object to specify the breakpoint properties for a chart or
state transition table. For more information, see “Set Breakpoints to Debug Charts”.

Creation
Each chart and state transition table has its own Stateflow.ChartBreakpoints object. To access
the Stateflow.ChartBreakpoints object, use the Debug.Breakpoints property of the
Stateflow.Chart or Stateflow.StateTransitionTableChart object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

OnEntry — Whether to set On Chart Entry breakpoint
false or 0 (default) | true or 1

Whether to set the On Chart Entry breakpoint, specified as a numeric or logical 1 (true) or 0
(false).

Examples

Set Breakpoint for Chart

Access the Stateflow.ChartDebug and Stateflow.ChartBreakpoints objects for the
Stateflow.Chart object ch.

debug = ch.Debug;
breakpoints = debug.Breakpoints;

Set the On Chart Entry breakpoint.

breakpoints.OnEntry = true;

See Also
Stateflow.Chart | Stateflow.StateTransitionTableChart

Topics
“Overview of the Stateflow API” on page 1-2

2 API Object Reference

2-74



“List of Stateflow API Properties” on page 4-2
“Set Breakpoints to Debug Charts”

Introduced before R2006a

 Stateflow.ChartBreakpoints

2-75



Stateflow.ChartDebug
Debugger properties for chart or state transition table

Description
Use a Stateflow.ChartDebug object to specify the debugger properties for a chart or state
transition table.

Creation
Each chart and state transition table has its own Stateflow.ChartDebug object. To access the
Stateflow.ChartDebug object, use the Debug property for the Stateflow.Chart or
Stateflow.StateTransitionTableChart object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Breakpoints — Breakpoint properties
Stateflow.ChartBreakpoints object

Breakpoint properties for the chart or state transition table, specified as a
Stateflow.ChartBreakpoints object with this property:

• OnEntry — Whether to set the On Chart Entry breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

For more information, see “Set Breakpoints to Debug Charts”.

Examples

Set Breakpoint for Chart

Access the Stateflow.ChartDebug and Stateflow.ChartBreakpoints objects for the
Stateflow.Chart object ch.

debug = ch.Debug;
breakpoints = debug.Breakpoints;

Set the On Chart Entry breakpoint.

2 API Object Reference

2-76



breakpoints.OnEntry = true;

See Also
Stateflow.Chart | Stateflow.StateTransitionTableChart

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2
“Set Breakpoints to Debug Charts”

Introduced before R2006a

 Stateflow.ChartDebug

2-77



Stateflow.Event
Event in chart, state, or box

Description
Use Stateflow.Event objects to trigger actions in one of these objects:

• A parallel state in a Stateflow chart
• Another Stateflow chart
• A Simulink triggered or function-call subsystem

For more information, see “Synchronize Model Components by Broadcasting Events”.

Creation

Syntax
event = Stateflow.Event(parent)

Description

event = Stateflow.Event(parent) creates a Stateflow.Event object in a parent chart, state,
or box.

Input Arguments

parent — Parent for new event
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object

Parent for the new event, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.State

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Interface

Name — Name of event
'event' (default) | character vector

2 API Object Reference

2-78



Name of the event, specified as a character vector.

Scope — Scope of event
'Local' (default) | 'Input' | 'Output'

Scope of the event, specified as 'Local', 'Input', or 'Output'. For more information, see
“Scope”.

Trigger — Type of trigger
'Function call' (default) | 'Rising' | 'Falling' | 'Either'

Type of trigger associated with the event, specified as a character vector that depends on the scope
of the data:

• For input events, use 'Function call', 'Rising', 'Falling', or 'Either'.
• For output events, use 'Function call' or 'Either'.

This property does not apply to local events. For more information, see “Trigger”.

Port — Port index for event
scalar

Port index for the event, specified as an integer scalar. This property applies only to input and output
events. For more information, see “Port”.

Debugging

Debug — Debugger properties
Stateflow.EventDebug object

Debugger properties for the event, specified as a Stateflow.EventDebug object with these
properties:

• Breakpoints.StartBroadcast — Whether to set the Start of Broadcast breakpoint,
specified as a numeric or logical 1 (true) or 0 (false).

• Breakpoints.EndBroadcast — Whether to set the End of Broadcast breakpoint, specified
as a numeric or logical 1 (true) or 0 (false).

For more information, see “Set Breakpoints to Debug Charts”.
Example: event.Debug.Breakpoints.StartBroadcast = true;
Example: event.Debug.Breakpoints.EndBroadcast = true;

Hierarchy

Machine — Machine that contains event
Stateflow.Machine object

This property is read-only.

Machine that contains the event, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

 Stateflow.Event

2-79



This property is read-only.

Location of the parent of the event in the model hierarchy, specified as a character vector.

Identification

Description — Description
'' (default) | character vector

Description for the event, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the event, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the event, specified as data of any type.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Use this property to distinguish the event from other
objects in the model. The value of this property is reassigned every time you start a new MATLAB
session and may be recycled after an object is deleted.

Object Functions
getParent Identify parent of object
dialog Open properties dialog box
view Display object in editing environment

Examples

Add Event to Chart

Add a event to the chart ch. Specify its name and scope.

event = Stateflow.Event(ch);
event.Name = 'E';
event.Scope = 'Input';

See Also
Stateflow.Box | Stateflow.Chart | Stateflow.State

Topics
“Overview of the Stateflow API” on page 1-2
“Synchronize Model Components by Broadcasting Events”
“Set Properties for an Event”

2 API Object Reference

2-80



“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.Event

2-81



Stateflow.EventBreakpoints
Breakpoint properties for event

Description
Use a Stateflow.EventBreakpoints object to specify the breakpoint properties for an event. For
more information, see “Set Breakpoints to Debug Charts”.

Creation
Each event has its own Stateflow.EventBreakpoints object. To access the
Stateflow.EventBreakpoints object, use the Debug.Breakpoints property of the
Stateflow.Event object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

StartBroadcast — Whether to set Start of Broadcast breakpoint
false or 0 (default) | true or 1

Whether to set the Start of Broadcast breakpoint, specified as a numeric or logical 1 (true) or 0
(false).

EndBroadcast — Whether to set End of Broadcast breakpoint
false or 0 (default) | true or 1

Whether to set the End of Broadcast breakpoint, specified as a numeric or logical 1 (true) or 0
(false).

Examples

Set Breakpoints for Event

Access the Stateflow.EventDebug and Stateflow.EventBreakpoints objects for the
Stateflow.Event object event.

debug = event.Debug;
breakpoints = debug.Breakpoints;

Set the Start of Broadcast and End of Broadcast breakpoints.

2 API Object Reference

2-82



breakpoints.StartBroadcast = true;
breakpoints.EndBroadcast = true;

See Also
Stateflow.Event

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2
“Set Breakpoints to Debug Charts”

Introduced before R2006a

 Stateflow.EventBreakpoints

2-83



Stateflow.EventDebug
Debugger properties for event

Description
Use a Stateflow.EventDebug object to specify the debugger properties for an event.

Creation
Each event has its own Stateflow.EventDebug object. To access the Stateflow.EventDebug
object, use the Debug property for the Stateflow.Event object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Breakpoints — Breakpoint properties
Stateflow.EventBreakpoints object

Breakpoint properties for the event, specified as a Stateflow.EventBreakpoints object with
these properties:

• StartBroadcast — Whether to set the Start of Broadcast breakpoint, specified as a
numeric or logical 1 (true) or 0 (false).

• EndBroadcast — Whether to set the End of Broadcast breakpoint, specified as a numeric or
logical 1 (true) or 0 (false).

For more information, see “Set Breakpoints to Debug Charts”.

Examples

Set Breakpoints for Event

Access the Stateflow.EventDebug and Stateflow.EventBreakpoints objects for the
Stateflow.Event object event.

debug = event.Debug;
breakpoints = debug.Breakpoints;

Set the Start of Broadcast and End of Broadcast breakpoints.

2 API Object Reference

2-84



breakpoints.StartBroadcast = true;
breakpoints.EndBroadcast = true;

See Also
Stateflow.Event

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2
“Set Breakpoints to Debug Charts”

Introduced before R2006a

 Stateflow.EventDebug

2-85



Stateflow.FixptType
Fixed-point properties for data and messages

Description
Use a Stateflow.FixptType object to specify the fixed-point properties for a data object or
message. For more information, see “Fixed-Point Data in Stateflow Charts”.

Creation
Each data object and message has its own Stateflow.FixptType object. To access the
Stateflow.FixptType object, use the Props.Type.Fixpt property for the Stateflow.Data or
Stateflow.Message object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

ScalingMode — Method for scaling fixed-point data
'None' (default) | 'Binary point' | 'Slope and bias'

Method for scaling the fixed-point data object or message data, specified as 'Binary point',
'Slope and bias', or 'None'.

FractionLength — Fraction length
'' (default) | character vector

Fraction length, in bits, specified as a character vector. This property applies only to fixed-point data
when the ScalingMode property is 'Binary point'.

Slope — Slope
'' (default) | character vector

Slope, specified as a character vector. This property applies only to fixed-point data when the
ScalingMode property is 'Slope and bias'.

Bias — Bias
'' (default) | character vector

Bias, specified as a character vector. This property applies only to fixed-point data when the
ScalingMode property is 'Slope and bias'.

Lock — Whether to prevent replacement of fixed-point type
false or 0 (default) | true or 1

2 API Object Reference

2-86



Whether to prevent replacement of the fixed-point type with an autoscaled type chosen by the Fixed-
Point Tool (Fixed-Point Designer), specified as a numeric or logical 1 (true) or 0 (false). For more
information, see “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” (Fixed-Point Designer).

Examples

Specify Fixed-Point Data Type

Access the Stateflow.Props, Stateflow.DataType, and Stateflow.FixptType objects for the
Stateflow.Data object x.

properties = x.Props;
type = properties.Type;
fixpt = type.Fixpt;

Specify the fixed-point properties.

type.Method = 'Fixed point';
type.Signed = true;
type.WordLength = '5';
fixpt.ScalingMode = 'Binary point';
fixpt.FractionLength = '2';

Verify the data type.

x.DataType

ans =
    'fixdt(1,5,2)'

See Also
Stateflow.Data | Stateflow.Message

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.FixptType

2-87



Stateflow.Function
Graphical function in chart, state, box, or function

Description
Use Stateflow.Function objects to create graphical functions that contain control-flow logic and
iterative loops. You create graphical functions with flow charts that use connective junctions and
transitions. You can call a graphical function in the actions of states and transitions. For more
information, see “Reuse Logic Patterns by Defining Graphical Functions”.

Creation

Syntax
function = Stateflow.Function(parent)

Description

function = Stateflow.Function(parent) creates a Stateflow.Function object in a parent
chart, state, box, or function.

Input Arguments

parent — Parent for new graphical function
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

Parent for the new graphical function, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.Function
• Stateflow.State

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Content

Name — Name of graphical function
'' (default) | character vector

Name of the graphical function, specified as a character vector.

2 API Object Reference

2-88



LabelString — Label for graphical function
'?' (default) | character vector

Label for the graphical function, specified as a character vector.

IsExplicitlyCommented — Whether to comment out graphical function
false or 0 (default) | true or 1

Whether to comment out the graphical function, specified as a numeric or logical 1 (true) or 0
(false). Setting this property to true is equivalent to right-clicking the graphical function and
selecting Comment Out. For more information, see “Commenting Stateflow Objects in a Chart”.

IsImplicitlyCommented — Whether graphical function is implicitly commented out
true or 1 | false or 0

This property is read-only.

Whether the graphical function is implicitly commented out, specified as a numeric or logical 1
(true) or 0 (false). The graphical function is implicitly commented out when you comment out a
state, box, or function that contains it.

CommentText — Comment text
'' (default) | character vector

Comment text for the graphical function, specified as a character vector. This property applies only
when the IsExplicitlyCommented property is true. In the Stateflow Editor, when you point to the
comment badge  on the graphical function, the text appears as a tooltip. When you set the
IsExplicitlyCommented property to false, the value of CommentText reverts to ''.

Graphical Appearance

Position — Position and size of graphical function
[0 0 90 60] (default) | [left top width height]

Position and size of the graphical function, specified as a four-element numeric vector of the form
[left top width height].

BadIntersection — Whether function intersects a box, state, or function
true or 1 | false or 0

This property is read-only.

Whether the graphical function graphically intersects a box, state, or function, specified as a numeric
or logical 1 (true) or 0 (false).

IsGrouped — Whether function is a grouped function
false or 0 (default) | true or 1

Whether the function is a grouped function, specified as a numeric or logical 1 (true) or 0 (false).
When you copy and paste a grouped function, you copy not only the function but all of its contents.
For more information, see “Copy and Paste by Grouping” on page 2-24.

IsSubchart — Whether function is a subchart
false or 0 (default) | true or 1

 Stateflow.Function

2-89



Whether the function is a subchart, specified as a numeric or logical 1 (true) or 0 (false).

ContentPreviewEnabled — Whether to display preview of function contents
false or 0 (default) | true or 1

Whether to display a preview of the graphical function contents, specified as a numeric or logical 1
(true) or 0 (false). This property applies only when the IsSubchart property is true.

FontSize — Font size for graphical function label
scalar

Font size for the graphical function label, specified as a scalar. The StateFont.Size property of the
chart that contains the graphical function sets the initial value of this property.

Debugging

Debug — Debugger properties
Stateflow.FunctionDebug object

Debugger properties for the graphical function, specified as a Stateflow.FunctionDebug object
with this property:

• Breakpoints.OnDuring — Whether to set the During Function Call breakpoint, specified
as a numeric or logical 1 (true) or 0 (false).

For more information, see “Set Breakpoints to Debug Charts”.
Example: function.Debug.Breakpoints.OnDuring = true;

Code Generation

InlineOption — Appearance in generated code
'Auto' (default) | 'Function' | 'Inline'

Appearance of the graphical function in generated code, specified as one of these values:

• 'Auto' — An internal calculation determines the appearance of the function in generated code.
• 'Function' — The function is implemented as a separate C function.
• 'Inline' — Calls to the function are replaced by code.

For more information, see “Inline State Functions in Generated Code” (Simulink Coder).

Hierarchy

Chart — Chart that contains graphical function
Stateflow.Chart object

This property is read-only.

Chart that contains the graphical function, specified as a Stateflow.Chart object.

Subviewer — Subviewer for graphical function
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

This property is read-only.

2 API Object Reference

2-90



Subviewer for the graphical function, specified as a Stateflow.Chart, Stateflow.State,
Stateflow.Box, or Stateflow.Function object. The subviewer is the chart or subchart where
you can graphically view the graphical function.

Machine — Machine that contains graphical function
Stateflow.Machine object

This property is read-only.

Machine that contains the graphical function, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the graphical function in the model hierarchy, specified as a character
vector.

Identification

Description — Description
'' (default) | character vector

Description for the graphical function, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the graphical function, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the graphical function, specified as data of any type.

SSIdNumber — Session-independent identifier
scalar

This property is read-only.

Session-independent identifier, specified as an integer scalar. Use this property to distinguish the
graphical function from other objects in the model.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Unlike SSIdNumber, the value of this property is
reassigned every time you start a new MATLAB session and may be recycled after an object is
deleted.

 Stateflow.Function

2-91



Object Functions
find Identify specified objects in hierarchy
getChildren Identify children of object
getParent Identify parent of object
defaultTransitions Identify default transitions in specified object
dialog Open properties dialog box
isCommented Determine if graphical object is commented out
view Display object in editing environment
highlight Highlight graphical object
fitToView Zoom in on graphical object

Examples

Add Graphical Function to Chart

Add a graphical function in the chart ch. Set its label to '[y1,y2] = f(x1,x2,x3)'.

function = Stateflow.Function(ch);
function.LabelString = '[y1,y2] = f(x1,x2,x3)';

See Also
Stateflow.Box | Stateflow.Chart | Stateflow.State

Topics
“Overview of the Stateflow API” on page 1-2
“Reuse Logic Patterns by Defining Graphical Functions”
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

2 API Object Reference

2-92



Stateflow.FunctionBreakpoint
Breakpoint properties for graphical or truth table function

Description
Use a Stateflow.FunctionBreakpoint object to specify the breakpoint properties for a graphical
or truth table function. For more information, see “Set Breakpoints to Debug Charts”.

Creation
Each graphical and truth table function has its own Stateflow.FunctionBreakpoint object. To
access the Stateflow.FunctionBreakpoint object, use the Debug.Breakpoints property of the
Stateflow.Function or Stateflow.TruthTable object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

OnDuring — Whether to set During Function Call breakpoint
false or 0 (default) | true or 1

Whether to set the During Function Call breakpoint, specified as a numeric or logical 1 (true)
or 0 (false).

Examples

Set Breakpoint for Graphical Function

Access the Stateflow.FunctionDebug and Stateflow.FunctionBreakpoints objects for the
Stateflow.Function object f.

debug = f.Debug;
breakpoints = debug.Breakpoints;

Set the During Function Call breakpoint.

breakpoints.OnDuring = true;

See Also
Stateflow.Function | Stateflow.TruthTable

Topics
“Overview of the Stateflow API” on page 1-2

 Stateflow.FunctionBreakpoint

2-93



“List of Stateflow API Properties” on page 4-2
“Set Breakpoints to Debug Charts”

Introduced before R2006a

2 API Object Reference

2-94



Stateflow.FunctionDebug
Debugger properties for graphical or truth table function

Description
Use a Stateflow.FunctionDebug object to specify the debugger properties for a graphical or truth
table function.

Creation
Each graphical or truth table function has its own Stateflow.FunctionDebug object. To access the
Stateflow.FunctionDebug object, use the Debug property for the Stateflow.Function or
Stateflow.TruthTable object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Breakpoints — Breakpoint properties
Stateflow.FunctionBreakpoint object

Breakpoint properties for the graphical or truth table function, specified as a
Stateflow.FunctionBreakpoint object with this property:

• OnDuring — Whether to set the During Function Call breakpoint, specified as a numeric or
logical 1 (true) or 0 (false).

For more information, see “Set Breakpoints to Debug Charts”.

Examples

Set Breakpoint for Graphical Function

Access the Stateflow.FunctionDebug and Stateflow.FunctionBreakpoints objects for the
Stateflow.Function object f.

debug = f.Debug;
breakpoints = debug.Breakpoints;

Set the During Function Call breakpoint.

 Stateflow.FunctionDebug

2-95



breakpoints.OnDuring = true;

See Also
Stateflow.Function | Stateflow.TruthTable

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2
“Set Breakpoints to Debug Charts”

Introduced before R2006a

2 API Object Reference

2-96



Stateflow.Junction
Connective or history junction in chart, state, box, or function

Description
Use Stateflow.Junction objects to create junctions that:

• Represent decision points in a transition path
• Record the activity of substates inside a superstate

For more information, see “Combine Transitions and Junctions to Create Branching Paths” and
“Record State Activity by Using History Junctions”.

Creation

Syntax
junction = Stateflow.Junction(parent)

Description

junction = Stateflow.Junction(parent) creates a Stateflow.Junction object in a parent
chart, state, box, or graphical function.

Input Arguments

parent — Parent for new junction
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

Parent for the new junction, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.Function
• Stateflow.State

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

 Stateflow.Junction

2-97



Content

Type — Type of junction
'CONNECTIVE' (default) | 'HISTORY'

Type of junction, specified as one of these values:

• 'CONNECTIVE' — Connective junction that represents a decision point in a transition path
• 'HISTORY' — History junction that records the activity of substates inside a superstate

IsExplicitlyCommented — Whether to comment out junction
false or 0 (default) | true or 1

Whether to comment out the junction, specified as a numeric or logical 1 (true) or 0 (false). Setting
this property to true is equivalent to right-clicking the junction and selecting Comment Out. For
more information, see “Commenting Stateflow Objects in a Chart”.

IsImplicitlyCommented — Whether junction is implicitly commented out
true or 1 | false or 0

This property is read-only.

Whether the junction is implicitly commented out, specified as a numeric or logical 1 (true) or 0
(false). The junction is implicitly commented out when you comment out a state, box, or function
that contains it.

CommentText — Comment text
'' (default) | character vector

Comment text added to the junction, specified as a character vector. This property applies only when
the IsExplicitlyCommented property is true. In the Stateflow Editor, when you point to the
comment badge  on the junction, the text appears as a tooltip. When you set the
IsExplicitlyCommented property to false, the value of CommentText reverts to ''.

Graphical Appearance

Position — Position and size of junction
Stateflow.JunctionPosition object

Position and size of the junction, specified as a Stateflow.JunctionPosition object with these
properties:

• Center — Position of the center of the junction, specified as a two-element numeric vector [x y]
of coordinates relative to the upper left corner of the chart.

• Radius — Radius of the junction, specified as a scalar.

Example: junction.Position.Center = [31.41 27.18];
Example: junction.Position.Radius = 16.18;

ArrowSize — Size of incoming transition arrows
8 (default) | scalar

Size of incoming transition arrows, specified as a scalar.

2 API Object Reference

2-98



Hierarchy

Chart — Chart that contains junction
Stateflow.Chart object

This property is read-only.

Chart that contains the junction, specified as a Stateflow.Chart object.

Subviewer — Subviewer for junction
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

This property is read-only.

Subviewer for the junction, specified as a Stateflow.Chart, Stateflow.State, Stateflow.Box,
or Stateflow.Function object. The subviewer is the chart or subchart where you can graphically
view the junction.

Machine — Machine that contains junction
Stateflow.Machine object

This property is read-only.

Machine that contains the junction, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the junction in the model hierarchy, specified as a character vector.

Identification

Description — Description
'' (default) | character vector

Description for the junction, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the junction, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the junction, specified as data of any type.

SSIdNumber — Session-independent identifier
scalar

This property is read-only.

 Stateflow.Junction

2-99



Session-independent identifier, specified as an integer scalar. Use this property to distinguish the
junction from other objects in the model.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Unlike SSIdNumber, the value of this property is
reassigned every time you start a new MATLAB session and may be recycled after an object is
deleted.

Object Functions
getParent Identify parent of object
sinkedTransitions Identify transitions with specified destination
sourcedTransitions Identify transitions with specified source
dialog Open properties dialog box
isCommented Determine if graphical object is commented out
view Display object in editing environment
highlight Highlight graphical object
fitToView Zoom in on graphical object

Examples

Add Connective Junction to Chart

Add a connective junction in the chart ch. Change its size and position.

junction = Stateflow.Junction(ch);
junction.Position.Radius = 16.18;
junction.Position.Center = [31.41 27.18];

Add History Junction to Chart

Add a history junction in the chart ch.

junction = Stateflow.Junction(ch);
junction.Type = 'HISTORY';

See Also
Stateflow.AtomicBox | Stateflow.AtomicSubchart | Stateflow.Box | Stateflow.Chart |
Stateflow.Function | Stateflow.SimulinkBasedState | Stateflow.State

Topics
“Overview of the Stateflow API” on page 1-2
“Combine Transitions and Junctions to Create Branching Paths”
“Record State Activity by Using History Junctions”
“List of Stateflow API Properties” on page 4-2

2 API Object Reference

2-100



Introduced before R2006a

 Stateflow.Junction

2-101



Stateflow.JunctionPosition
Position and size of junctions

Description
Use a Stateflow.JunctionPosition object to control the position and size of a connective or
history junction.

Creation
Each junction has its own Stateflow.JunctionPosition object. To access the
Stateflow.JunctionPosition object, use the Position property for the Stateflow.Junction
object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Center — Position of center of junction
[7 7] (default) | [x y]

Position of the center of the junction, specified as a two-element numeric vector [x y] of coordinates
relative to the upper left corner of the chart.

Radius — Radius of junction
7 (default) | scalar

Radius of the junction, specified as a scalar.

Examples

Change Size of Entry Junction

Set the radius of the connective junction junction to 10.

junction.Position.Radius = 10;

See Also
Stateflow.Junction

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

2 API Object Reference

2-102



Introduced before R2006a

 Stateflow.JunctionPosition

2-103



Stateflow.Machine
Container for Stateflow blocks in a Simulink model

Description
From a Stateflow perspective, Stateflow.Machine objects are equivalent to Simulink models. A
Stateflow.Machine object contains Stateflow.Chart,
Stateflow.StateTransitionTableChart, Stateflow.TruthTableChart, and
Stateflow.EMChart objects that represent the Stateflow charts, State Transition Table blocks,
Truth Table blocks, and MATLAB Function blocks in a Simulink model. For more information, see
“Overview of the Stateflow API” on page 1-2.

Creation
You automatically create a Stateflow.Machine object when you load a model that contains a
Stateflow block or call the function sfnew. To access the Stateflow.Machine object, call the find
function for the Simulink.Root object. For example, if your Simulink model is named myModel,
enter:

rt = sfroot;
machine = find(rt,'-isa','Stateflow.Machine','Name','myModel');

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Content

Name — Name of Simulink model
character vector

This property is read-only.

Name of the Simulink model for the machine, specified as a character vector.

FullFileName — Full file path of Simulink model
character vector

This property is read-only.

Full file path of the Simulink model for the machine, specified as a character vector.

IsLibrary — Whether model builds library
false or 0 (default) | true or 1

This property is read-only.

2 API Object Reference

2-104



Whether the Simulink model for the machine builds a library and not an application, specified as a
numeric or logical 1 (true) or 0 (false).

Debugging

Debug — Debugger properties
Stateflow.MachineDebug object

Debugger properties for charts in the machine, specified as a Stateflow.MachineDebug object
with these properties:

• Animation.Enabled — Whether to animate the charts in the machine during simulation,
specified as a numeric or logical 1 (true) or 0 (false). Disabling this property is equivalent to
selecting None in the Animation Speed drop-down list in the Debug tab.

• Animation.Delay — Delay that the chart animation uses for highlighting each transition
segment in the machine, specified as a scalar. These values correspond to the settings of the
Animation Speed drop-down list in the Debug tab:

Delay Value Animation Speed
0.5 Slow
0.2 Medium
0 Fast
-1 Lightning Fast

• Animation.MaintainHighlighting — Whether to maintain the highlighting of active states in
the machine after the simulation ends, specified as a numeric or logical 1 (true) or 0 (false).

Example: machine.Debug.Animation.Enabled = true;
Example: machine.Debug.Animation.Delay = -1;

Hierarchy

Path — Location of machine in model hierarchy
character vector

This property is read-only.

Location of the machine in the model hierarchy, specified as a character vector.

Dirty — Whether model has changed
true or 1 | false or 0

Whether the Simulink model for the machine has changed after being opened or saved, specified as a
numeric or logical 1 (true) or 0 (false).

Locked — Whether machine is locked
false or 0 (default) | true or 1

Whether the machine is locked, specified as a numeric or logical 1 (true) or 0 (false). Enable this
property to prevent changes in the Stateflow charts, state transition tables, and truth table blocks in
this machine.

 Stateflow.Machine

2-105



Iced — Whether machine is locked
false or 0 (default) | true or 1

This property is read-only.

Whether the machine is locked, specified as a numeric or logical 1 (true) or 0 (false). This property
is equivalent to the property Locked, but is used internally to prevent changes in the machine during
simulation.

Identification

Created — Date of creation
character vector

This property is read-only.

Date of the creation of the machine, specified as a character vector.

Creator — Creator
'Unknown' (default) | character vector

Creator of the machine, specified as a character vector.

Modified — Record of modifications
'' (default) | character vector

Record of modifications to the machine, specified as a character vector.

Version — Version
'none' (default) | character vector

Version of the machine, specified as a character vector.

Description — Description
'' (default) | character vector

Description for the machine, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the machine, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the machine, specified as data of any type.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Use this property to distinguish the machine from
other objects in the model. The value of this property is reassigned every time you start a new
MATLAB session and may be recycled after an object is deleted.

2 API Object Reference

2-106



Object Functions
find Identify specified objects in hierarchy
dialog Open properties dialog box

Examples
Update Machine Version

Update the Modified and Version properties of machine machine.

machine.Modified = string(datetime);
oldVersion = str2num(machine.Version);
if isempty(oldVersion) 
    machine.Version = '1';
else
    machine.Version = num2str(oldVersion+1);
end

See Also
Functions
sfroot

Objects
Stateflow.Chart | Stateflow.StateTransitionTableChart |
Stateflow.TruthTableChart | Stateflow.EMChart

Topics
“Overview of the Stateflow API” on page 1-2
“Machine Properties”
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.Machine

2-107



Stateflow.MachineAnimation
Animation properties for charts in Stateflow machine

Description
Use a Stateflow.MachineAnimation object to specify the animation properties for the charts in a
Stateflow machine.

Creation
Each Stateflow machine has its own Stateflow.MachineAnimation object. To access the
Stateflow.MachineAnimation object, use the Debug.Animation property for the
Stateflow.Machine object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Enabled — Whether to animate charts during simulation
true or 1 (default) | false or 0

Whether to animate the charts in the machine during simulation, specified as a numeric or logical 1
(true) or 0 (false). Disabling this property is equivalent to selecting None in the Animation Speed
drop-down list in the Debug tab.

Delay — Delay for highlighting transitions
0 (default) | scalar

Delay that the chart animation uses for highlighting each transition segment in the machine,
specified as a scalar. These values correspond to the settings of the Animation Speed drop-down list
in the Debug tab:

Delay Value Animation Speed
0.5 Slow
0.2 Medium
0 Fast
-1 Lightning Fast

This property applies only when the Enable property of the machine is true.

MaintainHighlighting — Whether to maintain highlighting of active states
false or 0 (default) | true or 1

2 API Object Reference

2-108



Whether to maintain the highlighting of active states in the machine after the simulation ends,
specified as a numeric or logical 1 (true) or 0 (false).

Examples

Set Animation Speed to Lightning Fast

Access the Stateflow.MachineDebug and Stateflow.MachineAnimation objects for the
Stateflow.Machine object machine.

debug = machine.Debug;
animation = debug.Animation;

Enable animation and set delay to -1.

animation.Enabled = true;
animation.Delay = -1;

See Also
Stateflow.Machine

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.MachineAnimation

2-109



Stateflow.MachineDebug
Debugger properties for charts in Stateflow machine

Description
Use a Stateflow.MachineDebug object to specify the debugger properties for the charts in a
Stateflow machine.

Creation
Each Stateflow machine has its own Stateflow.MachineDebug object. To access the
Stateflow.MachineDebug object, use the Debug property for the Stateflow.Machine object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Animation — Animation properties
Stateflow.MachineAnimation object

Animation properties for charts in the machine, specified as a Stateflow.MachineAnimation
object with these properties:

• Enabled — Whether to animate the charts in the machine during simulation, specified as a
numeric or logical 1 (true) or 0 (false). Disabling this property is equivalent to selecting None
in the Animation Speed drop-down list in the Debug tab.

• Delay — Delay that the chart animation uses for highlighting each transition segment in the
machine, specified as a scalar. These values correspond to the settings of the Animation Speed
drop-down list in the Debug tab:

Delay Value Animation Speed
0.5 Slow
0.2 Medium
0 Fast
-1 Lightning Fast

• MaintainHighlighting — Whether to maintain the highlighting of active states in the machine
after the simulation ends, specified as a numeric or logical 1 (true) or 0 (false).

Examples

2 API Object Reference

2-110



Set Animation Speed to Lightning Fast

Access the Stateflow.MachineDebug and Stateflow.MachineAnimation objects for the
Stateflow.Machine object machine.

debug = machine.Debug;
animation = debug.Animation;

Enable animation and set delay to -1.

animation.Enabled = true;
animation.Delay = -1;

See Also
Stateflow.Machine

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.MachineDebug

2-111



Stateflow.Message
Message in chart, state, or box

Description
Use Stateflow.Message objects to communicate data locally or between Stateflow charts in
Simulink models. For more information, see “Communicate with Stateflow Charts by Sending
Messages”.

Creation

Syntax
message = Stateflow.Message(parent)

Description

message = Stateflow.Message(parent) creates a Stateflow.Message object in a parent
chart, state, or box.

Input Arguments

parent — Parent for new message
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object

Parent for the new message, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.State

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Interface

Name — Name of message
'message' (default) | character vector

Name of the message, specified as a character vector.

Scope — Scope of message
'Output' (default) | 'Input' | 'Local'

2 API Object Reference

2-112



Scope of the message, specified as specified as 'Local', 'Input', or 'Output'. For more
information, see “Scope”.

Port — Port index for message
scalar

Port index for the message, specified as an integer scalar. This property applies only to input and
output messages. For more information, see “Port”.

InitializeMethod — Method for initializing message data
'Expression' (default) | 'Parameter' | 'Not Needed'

Method for initializing the value of the message data, specified as a character vector that depends on
the scope of the message:

• For local and output messages, use 'Expression' or 'Parameter'.
• For input messages, use 'Not Needed'.

To specify the initial value of the message data, use the Props.InitialValue property.

For more information, see “Initial Value”.

Priority — Priority
'300' (default) | character vector

Priority for the message, specified as a character vector. If two distinct messages occur at the same
time, this property determines which message is processed first. A smaller numeric value indicates a
higher priority. This property applies only to local and output messages in discrete-event charts. For
more information, see “Create Custom Queuing Systems Using Discrete-Event Stateflow Charts”
(SimEvents).

Queue

UseInternalQueue — Whether chart maintains internal queue for message
true or 1 (default) | false or 0

Whether the Stateflow chart maintains an internal receiving queue for the input message, specified
as a numeric or logical 1 (true) or 0 (false). This property applies only to input messages. For more
information, see “Use Internal Queue”.

QueueType — Order in which messages are removed from queue
'FIFO' (default) | 'LIFO' | 'Priority'

Order in which messages are removed from the receiving queue, specified as one of these values:

• 'FIFO' — First in, first out.
• 'LIFO' — Last in, first out.
• 'Priority' — Remove messages according to the value in the data field. To specify the order,

use the MessagePriorityOrder property for the message.

This property applies only to local messages and to input messages that have UseInternalQueue
set to true. For more information, see “Queue Type”.

MessagePriorityOrder — Type of priority queue
'Ascending' (default) | 'Descending'

 Stateflow.Message

2-113



Type of priority queue for the message, specified as one of these values:

• 'Ascending' — Messages are received in ascending order of the message data value.
• 'Descending' — Messages are received in descending order of the message data value.

This property applies only when the QueueType property of the message is 'Priority'. For more
information, see “Queue Type”.

QueueCapacity — Length of internal queue
10 (default) | scalar

Length of the internal queue for the message, specified as an integer scalar. This property applies
only to local messages and to input messages that have UseInternalQueue set to true. For more
information, see “Queue Capacity”.

QueueOverflowDiagnostic — Level of diagnostic when number of messages exceeds queue
capacity
'Error' (default) | 'Warning' | 'None'

Level of diagnostic action when the number of incoming messages exceeds the queue capacity for the
message, specified as 'Error', 'Warning', or 'None'. This property applies only to local messages
and to input messages that have UseInternalQueue set to true. For more information, see “Queue
Overflow Diagnostic”.

Data Specification

DataType — Data type of message
'Inherit: Same as Simulink' (default) | 'double' | 'single' | 'int32' | 'uint32' |
'boolean' | ...

Data type of the message, specified as a character vector that depends on the Props.Type.Method
property of the message:

• If the Props.Type.Method property of the message is 'Inherit', the value of this property is
'Inherit: Same as Simulink'.

• If the Props.Type.Method property of the message is 'Built-in', you can specify this
property with one of these options:

• 'double'
• 'single'
• 'int8'
• 'int16'
• 'int32'
• 'int64'
• 'uint8'
• 'uint16'
• 'uint32'
• 'uint64'
• 'boolean'
• 'string'

2 API Object Reference

2-114



• 'ml' (Supported only in charts that use C as the action language)
• Otherwise, the Props.Type properties of the message determine the value of this property.

For more information, see the section Add Data on page 1-0  in “Create Charts by Using the
Stateflow API” on page 1-19.

Props — Data specification properties
Stateflow.DataProps object

Data specification properties, specified as a Stateflow.DataProps object with these properties:

• Type.Method — Method for setting the data type of the message, specified as 'Inherited',
'Built-in', 'Bus Object', 'Enumerated', 'Expression', or 'Fixed point'. This
property is equivalent to the Mode field of the Data Type Assistant in the Model Explorer and the
Data properties dialog box. For more information, see “Specify Type of Stateflow Data”.

• Type.BusObject — Name of the Simulink.Bus object that defines the message data, specified
as a character vector. This property applies only when the Type.Method property of the data
object is 'Bus Object'. For more information, see “Access Bus Signals Through Stateflow
Structures”.

• Type.EnumType — Name of the enumerated type that defines the message data, specified as a
character vector. This property applies only when the Type.Method property of the data object is
'Enumerated'. For more information, see “Reference Values by Name by Using Enumerated
Data”.

• Type.Expression — Expression that evaluates to the data type of the message data, specified as
a character vector. This property applies only when the Type.Method property of the data object
is 'Expression'. For more information, see “Specify Data Properties by Using MATLAB
Expressions”.

• Type.Signed — Signedness, specified as a numeric or logical 1 (true) or 0 (false). This
property applies only when the Type.Method property of the data object is 'Fixed point'. For
more information, see “Fixed-Point Data in Stateflow Charts”.

• Type.WordLength — Word length, in bits, specified as a character vector. This property applies
only when the Type.Method property of the data object is 'Fixed point'. For more
information, see “Fixed-Point Data in Stateflow Charts”.

• Type.Fixpt.ScalingMode — Method for scaling the fixed-point message data, specified as
'Binary point', 'Slope and bias', or 'None'. This property applies only when the
Type.Method property of the data object is 'Fixed point'. For more information, see “Fixed-
Point Data in Stateflow Charts”.

• Type.Fixpt.FractionLength — Fraction length, in bits, specified as a character vector. This
property applies only when the Type.Method property is 'Fixed point' and the
Type.Fixpt.ScalingMode property is 'Binary point'.

• Type.Fixpt.Slope — Slope, specified as a character vector. This property applies only when the
Type.Method property is 'Fixed point' and the Type.Fixpt.ScalingMode property is
'Slope and bias'.

• Type.Fixpt.Bias — Bias, specified as a character vector. This property applies only to when the
Type.Method property is 'Fixed point' and the Type.Fixpt.ScalingMode property is
'Slope and bias'.

• Type.Fixpt.Lock — Whether to prevent replacement of the fixed-point type with an autoscaled
type chosen by the Fixed-Point Tool (Fixed-Point Designer), specified as a numeric or logical 1
(true) or 0 (false). This property applies only when the Type.Method property of the data
object is 'Fixed point'.

 Stateflow.Message

2-115



• Array.Size — Size of the message data, specified as a character vector. For more information,
see “Specify Size of Stateflow Data”.

• Complexity — Whether the message accepts complex values, specified as 'On' or 'Off'. For
more information, see “Complex Data in Stateflow Charts”.

• InitialValue — Initial value, specified as a character vector.

CompiledSize — Message data size as determined by compiler
'' (default) | character vector

This property is read-only.

Message data size as determined by the compiler, specified as a character vector.

CompiledType — Data type as determined by compiler
'unknown' (default) | character vector

This property is read-only.

Data type as determined by the compiler, specified as a character vector.

Hierarchy

Machine — Machine that contains message
Stateflow.Machine object

This property is read-only.

Machine that contains the message, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the message in the model hierarchy, specified as a character vector.

Identification

Description — Description
'' (default) | character vector

Description for the message, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the message, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the message, specified as data of any type.

SSIdNumber — Session-independent identifier
scalar

2 API Object Reference

2-116



This property is read-only.

Session-independent identifier, specified as an integer scalar. Use this property to distinguish the
message from other objects in the model.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Unlike SSIdNumber, the value of this property is
reassigned every time you start a new MATLAB session and may be recycled after an object is
deleted.

Object Functions
getParent Identify parent of object
dialog Open properties dialog box
view Display object in editing environment

Examples

Add Message to Chart

Add a message to the chart ch. Specify its name, scope, and data type.

message = Stateflow.Message(ch);
message.Name = 'M';
message.Scope = 'Input';
message.Props.Type.Method = 'Built-in';
message.DataType = 'int32';

See Also
Stateflow.Box | Stateflow.Chart | Stateflow.State

Topics
“Overview of the Stateflow API” on page 1-2
“Communicate with Stateflow Charts by Sending Messages”
“Set Properties for a Message”
“List of Stateflow API Properties” on page 4-2

Introduced in R2015b

 Stateflow.Message

2-117



Stateflow.NoteFont
Font properties for annotations

Description
Use a Stateflow.NoteFont object to specify the font properties for an annotation.

Creation
Each annotation has its own Stateflow.NoteFont object. To access the Stateflow.NoteFont
object, use the Font property for the Stateflow.Annotation object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Name — Font name
'Helvetica' (default) | character vector

This property is read-only.

Font name, specified as a character vector. The StateFont.Name property of the chart that contains
the annotation sets the value of this property.

Angle — Font angle
'NORMAL' (default) | 'ITALIC'

Font angle, specified as 'NORMAL' or 'ITALIC'.

Weight — Font weight
'NORMAL' (default) | 'BOLD'

Font weight, specified as 'NORMAL' or 'BOLD'.

Size — Font size
scalar

Font size, specified as a scalar. The StateFont.Size property of the chart that contains the
annotation sets the default value of this property.

Examples

2 API Object Reference

2-118



Change Font Properties for Annotation

Access the Stateflow.NoteFont object for the Stateflow.Annotation object annotation.

font = annotation.Font;

Set the font angle to italics, the font weight to bold, and the font size to 8.

font.Angle = 'ITALIC';
font.Weight = 'BOLD';
font.Size = 8;

See Also
Stateflow.Annotation

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.NoteFont

2-119



Stateflow.Port
Entry or exit port in state or atomic subchart

Description
Use Stateflow.Port objects to create ports and junctions that provide entry and exit connections
across boundaries in the Stateflow hierarchy. Entry and exit ports improve componentization by
isolating the transition logic for entering and exiting states. Unlike supertransitions, they can be used
in atomic subcharts. For more information, see “Create Entry and Exit Connections Across State
Boundaries”.

Entry and exit ports are located on the boundary of a state or atomic subchart. Each port has a
matching junction that marks the entry or exit point inside the state or atomic subchart. The port and
junction are represented by separate Stateflow.Port objects.

Creation

Syntax
port = Stateflow.Port(parent,portType)

Description

port = Stateflow.Port(parent,portType) creates a Stateflow.Port object of the specified
port type in the parent. The function creates a second Stateflow.Port object for the matching
entry or exit port on the boundary of the parent. To identify the matching Stateflow.Port object,
use the function Stateflow.findMatchingPort.

Input Arguments

parent — Parent for new entry or exit junction
Stateflow.State object | Stateflow.Chart object

Parent for the new entry or exit junction, specified as a Stateflow.State object or as a
Stateflow.Chart object that is the subchart of a Stateflow.AtomicSubchart object.

portType — Type of junction
'EntryJunction' | 'ExitJunction'

Type of junction, specified as 'EntryJunction' or 'ExitJunction'.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

2 API Object Reference

2-120



Content

LabelString — Label for port or junction
'' (default) | character vector

Label for the port or junction, specified as a character vector. Changing this property automatically
sets the LabelString property for the matching Stateflow.Port object to the same value.

PortType — Type of port or junction
'EntryJunction' | 'EntryPort' | 'ExitJunction' | 'ExitPort'

This property is read-only.

Type of port or junction, specified as one of these values:

• 'EntryJunction' — Entry junction inside a state or atomic subchart
• 'EntryPort' — Entry port on the boundary of a state or atomic subchart
• 'ExitJunction' — Exit junction inside a state or atomic subchart
• 'ExitPort' — Exit port on the boundary of a state or atomic subchart

IsExplicitlyCommented — Whether to comment out junction and port pair
false or 0 (default) | true or 1

Whether to comment out the junction and port pair, specified as a numeric or logical 1 (true) or 0
(false). Setting this property to true is equivalent to right-clicking the entry or exit junction and
selecting Comment Out. This property applies only to entry and exit junctions. Attempting to set this
property on an entry or exit port results in an error. For more information, see “Commenting
Stateflow Objects in a Chart”.

IsImplicitlyCommented — Whether port or junction is implicitly commented out
true or 1 | false or 0

This property is read-only.

Whether the port or junction is implicitly commented out, specified as a numeric or logical 1 (true)
or 0 (false). The port or junction is implicitly commented out when you comment out a state, box, or
function that contains it. Additionally, entry and exit ports are implicitly commented out when you
comment out their matching entry or exit junction.

CommentText — Comment text
'' (default) | character vector

Comment text added to the entry or exit junction, specified as a character vector. This property
applies only to entry and exit junctions when the IsExplicitlyCommented property is true. In the
Stateflow Editor, when you point to the comment badge  on the junction, the text appears as a
tooltip. When you set the IsExplicitlyCommented property to false, the value of CommentText
reverts to ''.

Graphical Appearance

Position — Position and size of port or junction
Stateflow.PortPosition object

 Stateflow.Port

2-121



Position and size of the port or junction, specified as a Stateflow.PortPosition object with these
properties:

• Center — Position of the center of the port or junction, specified as a two-element numeric vector
[x y] of coordinates relative to the upper left corner of the chart.

• Radius — Radius of the port or junction, specified as a scalar.

Example: port.Position.Center = [31.41 27.18];
Example: port.Position.Radius = 16.18;

LabelPosition — Position and size of port or junction label
[-10 -15 2 16] (default) | [left top width height]

Position and size of the port or junction label, specified as a four-element numeric vector of the form
[left top width height].

ArrowSize — Size of incoming transition arrows
8 (default) | scalar

Size of incoming transition arrows, specified as a scalar.

Hierarchy

Chart — Chart that contains port or junction
Stateflow.Chart object

This property is read-only.

Chart that contains the port or junction, specified as a Stateflow.Chart object.

Subviewer — Subviewer for port or junction
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object

This property is read-only.

Subviewer for the port or junction, specified as a Stateflow.Chart, Stateflow.State, or
Stateflow.Box object. The subviewer is the chart or subchart where you can graphically view the
port.

Home — Home state or subchart
Stateflow.State object | Stateflow.AtomicSubchart object

This property is read-only.

Home state or subchart, specified as a Stateflow.State or Stateflow.AtomicSubchart object.
The home of an entry or exit port is the state or subchart whose boundary contains the port. This
property applies only to entry and exit ports.

Machine — Machine that contains port or junction
Stateflow.Machine object

This property is read-only.

Machine that contains the port or junction, specified as a Stateflow.Machine object.

2 API Object Reference

2-122



Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the port or junction in the model hierarchy, specified as a character vector.

Linked — Whether port or junction has matching junction or port
true or 1 (default) | false or 0

This property is read-only.

Whether the port or junction has a matching junction or port, specified as a numeric or logical 1
(true) or 0 (false). This property is used to detect internal inconsistencies in the chart.

Identification

Description — Description
'' (default) | character vector

Description for the port or junction, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the port or junction, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the port or junction, specified as data of any type.

SSIdNumber — Session-independent identifier
scalar

This property is read-only.

Session-independent identifier, specified as an integer scalar. Use this property to distinguish the port
or junction from other objects in the model.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Unlike SSIdNumber, the value of this property is
reassigned every time you start a new MATLAB session and may be recycled after an object is
deleted.

Object Functions
getParent Identify parent of object
sinkedTransitions Identify transitions with specified destination
sourcedTransitions Identify transitions with specified source
dialog Open properties dialog box

 Stateflow.Port

2-123



isCommented Determine if graphical object is commented out
view Display object in editing environment
highlight Highlight graphical object
fitToView Zoom in on graphical object

Examples

Add Exit Port and Junction to Atomic Subchart

Find the Stateflow.AtomicSubchart object that corresponds to the atomic subchart A in the
chart ch.

atomicSubchart = find(ch,'-isa','Stateflow.AtomicSubchart','Name','A');

Add an exit junction to the atomic subchart. Use the Subchart property of the atomic subchart as
the parent of the exit junction. Display the value of the PortType property of the exit junction.

exitJunction = Stateflow.Port(atomicSubchart.Subchart,'ExitJunction');
exitJunction.PortType

ans =

    'ExitJunction'

Set the label of the exit junction to 'exit'.

exitJunction.labelString = 'exit';

Find the Stateflow.Port object for the matching exit port. Display the value of the PortType
property of the exit port.

exitPort = Stateflow.findMatchingPort(exitJunction);
exitPort.PortType

ans =

    'ExitPort'

Display the label of the exit port.

exitPort.labelString

ans =

    'exit'

Tips
• If you move an entry or exit junction to a different parent, Stateflow deletes the Stateflow.Port

object for the matching port and creates a Stateflow.Port object on the new parent. To identify
the new matching port, use the Stateflow.findMatchingPort function.

2 API Object Reference

2-124



See Also
Functions
find | Stateflow.findMatchingPort

Objects
Stateflow.AtomicSubchart | Stateflow.Chart | Stateflow.State

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2
“Create Entry and Exit Connections Across State Boundaries”

Introduced in R2021b

 Stateflow.Port

2-125



Stateflow.PortPosition
Position and size of entry or exit ports

Description
Use a Stateflow.PortPosition object to control the position and size of an entry or exit port.

Creation
Each entry or exit port has its own Stateflow.PortPosition object. To access the
Stateflow.PortPosition object, use the Position property for the Stateflow.Port object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Center — Position of center of port or junction
[x y]

Position of the center of the port or junction, specified as a two-element numeric vector [x y] of
coordinates relative to the upper left corner of the chart.

Radius — Radius of port or junction
scalar

Radius of the port or junction, specified as a scalar.

Examples

Change Size of Entry Junction

Set the radius of the entry junction entryJunction to 10.

entryJunction.Position.Radius = 10;

See Also
Stateflow.Port

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

2 API Object Reference

2-126



Introduced in R2021b

 Stateflow.PortPosition

2-127



Stateflow.SigLoggingInfo
Signal logging properties for states and data

Description
Use a Stateflow.SigLoggingInfo object to specify the signal logging properties for a state or
data object. For more information, see “Log Simulation Output for States and Data”.

Creation
Each state, atomic subchart, Simulink based state, and data object has its own
Stateflow.SigLoggingInfo object. To access the Stateflow.SigLoggingInfo object, use the
LoggingInfo property for the Stateflow.State, Stateflow.AtomicSubchart,
Stateflow.SimulinkBasedState, or Stateflow.Data object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

DataLogging — Whether to enable signal logging
false or 0 (default) | true or 1

Whether to enable signal logging for the state or data object, specified as a numeric or logical 1
(true) or 0 (false).

DecimateData — Whether to limit logged data
false or 0 (default) | true or 1

Whether to limit the amount of logged data, specified as a numeric or logical 1 (true) or 0 (false).
When this property is true, signal logging skips samples by using the interval size specified by the
Decimation property. For more information, see “Decimation”.

Decimation — Decimation interval
2 (default) | scalar

Decimation interval, specified as an integer scalar. This property applies only when the
DecimateData property is true. The default value of 2 means that the chart logs every other
sample.

LimitDataPoints — Whether to limit number of data points to log
false or 0 (default) | true or 1

Whether to limit the number of data points to log, specified as a numeric or logical 1 (true) or 0
(false). When this property is true, signal logging limits the number of data points by using the
value specified by the MaxPoints property. For more information, see “Limit Data Points to Last”.

2 API Object Reference

2-128



MaxPoints — Maximum number of data points to log
5000 (default) | scalar

Maximum number of data points to log, specified as an integer scalar. This property applies only
when the LimitDataPoints property is true. The default value of 5000 means the chart logs the
last 5000 data points generated by the simulation.

NameMode — Source of signal name
'SignalName' (default) | 'Custom'

Source of the signal name used to log the state or data object, specified as one of these values:

• 'SignalName' — Use the name of the state or data object.
• 'Custom' — Use the custom signal name specified by the LoggingName property.

For more information, see “Logging Name”.

LoggingName — Custom signal name
character vector

Custom signal name for the state or data object, specified as a character vector. This property applies
only when the NameMode property is 'Custom'.

Examples

Enable Signal Logging for Data

Access the SigLoggingInfo object for the Stateflow.Data object x.

log = x.LoggingInfo;

Enable logging for the data object and specify a custom signal name.

log.DataLogging = true;
log.NameMode = 'Custom';
log.LoggingName = 'My Data';

See Also
Stateflow.Data | Stateflow.State | Stateflow.AtomicSubchart |
Stateflow.SimulinkBasedState

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2
“Log Simulation Output for States and Data”

Introduced before R2006a

 Stateflow.SigLoggingInfo

2-129



Stateflow.SimulinkBasedState
Simulink based state in chart, state, or box

Description
Use Stateflow.SimulinkBasedState objects to create Simulink subsystems within a Stateflow
state. With Simulink based states, you can model hybrid dynamic systems or systems that switch
between periodic and continuous time dynamics. For more information, see “Simulink Subsystems as
States”.

Creation
Syntax
simulinkBasedState = Stateflow.SimulinkBasedState(parent)

Description

simulinkBasedState = Stateflow.SimulinkBasedState(parent) creates a
Stateflow.SimulinkBasedState object in a parent chart, state, or box.

Input Arguments

parent — Parent for new Simulink based state
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object

Parent for the new Simulink based state, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.State

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Content

Name — Name of Simulink based state
'' (default) | character vector

Name of the Simulink based state, specified as a character vector.

IsExplicitlyCommented — Whether to comment out Simulink based state
false or 0 (default) | true or 1

2 API Object Reference

2-130



Whether to comment out the Simulink based state, specified as a numeric or logical 1 (true) or 0
(false). Setting this property to true is equivalent to right-clicking the Simulink based state and
selecting Comment Out. For more information, see “Commenting Stateflow Objects in a Chart”.

IsImplicitlyCommented — Whether Simulink based state is implicitly commented out
true or 1 | false or 0

This property is read-only.

Whether the Simulink based state is implicitly commented out, specified as a numeric or logical 1
(true) or 0 (false). The Simulink based state is implicitly commented out when you comment out a
state or box that contains it.

CommentText — Comment text
'' (default) | character vector

Comment text added to the Simulink based state, specified as a character vector. This property
applies only when the IsExplicitlyCommented property is true. In the Stateflow Editor, when you
point to the comment badge  on the Simulink based state, the text appears as a tooltip. When you
set the IsExplicitlyCommented property to false, the value of CommentText reverts to ''.

Graphical Appearance

Position — Position and size of Simulink based state
[0 0 90 60] (default) | [left top width height]

Position and size of the Simulink based state, specified as a four-element numeric vector of the form
[left top width height].

BadIntersection — Whether Simulink based state intersects a box, state, or function
true or 1 | false or 0

This property is read-only.

Whether the Simulink based state graphically intersects a box, state, or function, specified as a
numeric or logical 1 (true) or 0 (false).

ContentPreviewEnabled — Whether to display preview of Simulink based state contents
true or 1 (default) | false or 0

Whether to display a preview of the Simulink based state contents, specified as a numeric or logical 1
(true) or 0 (false).

ArrowSize — Size of incoming transition arrows
8 (default) | scalar

Size of incoming transition arrows, specified as a scalar.

FontSize — Font size for Simulink based state label
scalar

Font size for the Simulink based state label, specified as a scalar. The StateFont.Size property of
the chart that contains the Simulink based state sets the initial value of this property.

 Stateflow.SimulinkBasedState

2-131



State Decomposition

Type — Decomposition of sibling states
'AND' | 'OR'

This property is read-only.

Decomposition of sibling states, specified as 'OR' or 'AND'. The Simulink based state inherits this
property from the Decomposition property of its parent state or chart.

ExecutionOrder — Execution order in parallel (AND) decomposition
scalar

Execution order for the Simulink based state in parallel (AND) decomposition, specified as an integer
scalar. This property applies only when both of these conditions are satisfied:

• The Type property of the Simulink based state is 'AND'.
• The UserSpecifiedStateTransitionExecutionOrder property of the chart that contains the

Simulink based state is true.

Active State Output

HasOutputData — Whether to create active state data output
false or 0 (default) | true or 1

Whether to create an active state data output port for the Simulink based state, specified as a
numeric or logical 1 (true) or 0 (false). For more information, see “Monitor State Activity Through
Active State Data”.

OutputData — Active state data object
Stateflow.Data object

This property is read-only.

Active state data object for the Simulink based state, specified as a Stateflow.Data object. This
property applies only when the HasOutputData property for the Simulink based state is true.

OutputPortName — Name of active state data object
character vector

Name of the active state data object for the Simulink based state, specified as a character vector. This
property applies only when the HasOutputData property for the Simulink based state is true.

OutputMonitoringMode — Monitoring mode for active state output
'SelfActivity'

Monitoring mode for the active state output data, specified as a character vector. For Simulink based
states, the only option is 'SelfActivity'.

Signal Logging

LoggingInfo — Signal logging properties
Stateflow.SigLoggingInfo object

Signal logging properties for the Simulink based state, specified as a Stateflow.SigLoggingInfo
object with these properties:

2 API Object Reference

2-132



• DataLogging — Whether to enable signal logging, specified as a numeric or logical 1 (true) or 0
(false).

• DecimateData — Whether to limit the amount of logged data, specified as a numeric or logical 1
(true) or 0 (false).

• Decimation — Decimation interval, specified as an integer scalar. This property applies only
when the DecimateData property is true.

• LimitDataPoints — Whether to limit the number of data points to log, specified as a numeric or
logical 1 (true) or 0 (false).

• MaxPoints — Maximum number of data points to log, specified as an integer scalar. This property
applies only when the LimitDataPoints property is true.

• NameMode — Source of the signal name, specified as 'SignalName' or 'Custom'.
• LoggingName — Custom signal name, specified as a character vector. This property applies only

when the NameMode property is 'Custom'.

For more information, see “Log Simulation Output for States and Data”.
Example: state.LoggingInfo.DataLogging = true;

Debugging

Debug — Debugger properties
Stateflow.StateDebug object

Debugger properties for the Simulink based state, specified as a Stateflow.StateDebug object
with these properties:

• OnEntry — Whether to set the On State Entry breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

• OnDuring — Whether to set the During State breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

• OnExit — Whether to set the On State Exit breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

For more information, see “Set Breakpoints to Debug Charts”.
Example: simulinkBasedState.Debug.Breakpoints.OnEntry = true;
Example: simulinkBasedState.Debug.Breakpoints.OnDuring = true;
Example: simulinkBasedState.Debug.Breakpoints.OnExit = true;

TestPoint — Whether to set Simulink based state as test point
false or 0 (default) | true or 1

Whether to set the Simulink based state as a test point, specified as a numeric or logical 1 (true) or
0 (false). For more information, see “Monitor Test Points in Stateflow Charts”.

Hierarchy

Chart — Chart that contains Simulink based state
Stateflow.Chart object

This property is read-only.

 Stateflow.SimulinkBasedState

2-133



Chart that contains the Simulink based state, specified as a Stateflow.Chart object.

Subviewer — Subviewer for Simulink based state
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object

This property is read-only.

Subviewer for the Simulink based state, specified as a Stateflow.Chart, Stateflow.State, or
Stateflow.Box object. The subviewer is the chart or subchart where you can graphically view the
Simulink based state.

Machine — Machine that contains Simulink based state
Stateflow.Machine object

This property is read-only.

Machine that contains the Simulink based state, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the Simulink based state in the model hierarchy, specified as a character
vector.

Identification

Description — Description
'' (default) | character vector

Description for the Simulink based state, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the Simulink based state, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the Simulink based state, specified as data of any type.

SSIdNumber — Session-independent identifier
scalar

This property is read-only.

Session-independent identifier, specified as an integer scalar. Use this property to distinguish the
Simulink based state from other objects in the model.

Id — Unique identifier
scalar

This property is read-only.

2 API Object Reference

2-134



Unique identifier, specified as an integer scalar. Unlike SSIdNumber, the value of this property is
reassigned every time you start a new MATLAB session and may be recycled after an object is
deleted.

Object Functions
getParent Identify parent of object
dialog Open properties dialog box
isCommented Determine if graphical object is commented out
view Display object in editing environment
highlight Highlight graphical object
fitToView Zoom in on graphical object

Examples

Add Simulink Based State to Chart

Add a Simulink based state in the chart ch. Set its name to 'A'.

simulinkBasedState = Stateflow.SimulinkBasedState(ch);
simulinkBasedState.Name = 'A';

See Also
Stateflow.Box | Stateflow.Chart | Stateflow.State

Topics
“Overview of the Stateflow API” on page 1-2
“Simulink Subsystems as States”
“List of Stateflow API Properties” on page 4-2

Introduced in R2017b

 Stateflow.SimulinkBasedState

2-135



Stateflow.SLFunction
Simulink function in chart, state, box, or function

Description
Use Stateflow.SLFunction objects to create Simulink functions that enable you to call Simulink
subsystems in the actions of states and transitions. Typical applications include:

• Defining a function that requires Simulink blocks
• Scheduling execution of multiple controllers

For more information, see “Reuse Simulink Functions in Stateflow Charts”.

Creation

Syntax
function = Stateflow.SLFunction(parent)

Description

function = Stateflow.SLFunction(parent) creates a Stateflow.SLFunction object in a
parent chart, state, box, or function.

Input Arguments

parent — Parent for new Simulink function
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

Parent for the new Simulink function, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.Function
• Stateflow.State

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

2 API Object Reference

2-136



Content

Name — Name of Simulink function
'' (default) | character vector

Name of the Simulink function, specified as a character vector.

LabelString — Label for Simulink function
'?' (default) | character vector

Label for the Simulink function, specified as a character vector.

IsExplicitlyCommented — Whether to comment out Simulink function
false or 0 (default) | true or 1

Whether to comment out the Simulink function, specified as a numeric or logical 1 (true) or 0
(false). Setting this property to true is equivalent to right-clicking the Simulink function and
selecting Comment Out. For more information, see “Commenting Stateflow Objects in a Chart”.

IsImplicitlyCommented — Whether Simulink function is implicitly commented out
true or 1 | false or 0

This property is read-only.

Whether the Simulink function is implicitly commented out, specified as a numeric or logical 1 (true)
or 0 (false). The Simulink function is implicitly commented out when you comment out a state, box,
or function that contains it.

CommentText — Comment text
'' (default) | character vector

Comment text added to the Simulink function, specified as a character vector. This property applies
only when the IsExplicitlyCommented property is true. In the Stateflow Editor, when you point
to the comment badge  on the Simulink function, the text appears as a tooltip. When you set the
IsExplicitlyCommented property to false, the value of CommentText reverts to ''.

Graphical Appearance

Position — Position and size of Simulink function
[0 0 90 60] (default) | [left top width height]

Position and size of the Simulink function, specified as a four-element numeric vector of the form
[left top width height].

BadIntersection — Whether function intersects a box, state, or function
true or 1 | false or 0

This property is read-only.

Whether the Simulink function graphically intersects a box, state, or function, specified as a numeric
or logical 1 (true) or 0 (false).

ContentPreviewEnabled — Whether to display preview of Simulink function contents
true or 1 (default) | false or 0

 Stateflow.SLFunction

2-137



Whether to display a preview of the Simulink function contents, specified as a numeric or logical 1
(true) or 0 (false).

FontSize — Font size for Simulink function label
scalar

Font size for the Simulink function label, specified as a scalar. The StateFont.Size property of the
chart that contains the graphical function sets the initial value of this property.

Hierarchy

Chart — Chart that contains Simulink function
Stateflow.Chart object

This property is read-only.

Chart that contains the Simulink function, specified as a Stateflow.Chart object.

Subviewer — Subviewer for Simulink function
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

This property is read-only.

Subviewer for the Simulink function, specified as a Stateflow.Chart, Stateflow.State,
Stateflow.Box, or Stateflow.Function object. The subviewer is the chart or subchart where
you can graphically view the Simulink function.

Machine — Machine that contains Simulink function
Stateflow.Machine object

This property is read-only.

Machine that contains the Simulink function, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the Simulink function in the model hierarchy, specified as a character vector.

Identification

Description — Description
'' (default) | character vector

Description for the Simulink function, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the Simulink function, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

2 API Object Reference

2-138



User-defined tag for the Simulink function, specified as data of any type.

SSIdNumber — Session-independent identifier
scalar

This property is read-only.

Session-independent identifier, specified as an integer scalar. Use this property to distinguish the
MATLAB function from other objects in the model.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Unlike SSIdNumber, the value of this property is
reassigned every time you start a new MATLAB session and may be recycled after an object is
deleted.

Object Functions
find Identify specified objects in hierarchy
getChildren Identify children of object
getParent Identify parent of object
dialog Open properties dialog box
isCommented Determine if graphical object is commented out
view Display object in editing environment
highlight Highlight graphical object
fitToView Zoom in on graphical object

Examples

Add Simulink Function to Chart

Add a Simulink function in the chart ch. Set its label to '[y1,y2] = f(x1,x2,x3)'.

function = Stateflow.SLFunction(ch);
function.LabelString = '[y1,y2] = f(x1,x2,x3)';

See Also
Stateflow.Box | Stateflow.Chart | Stateflow.Function | Stateflow.State

Topics
“Overview of the Stateflow API” on page 1-2
“Reuse Simulink Functions in Stateflow Charts”
“List of Stateflow API Properties” on page 4-2

Introduced in R2008b

 Stateflow.SLFunction

2-139



Stateflow.State
State in chart, state, or box

Description
Use Stateflow.State objects to describe an operating mode of a reactive system. For more
information, see “Represent Operating Modes by Using States”.

Creation

Syntax
state = Stateflow.State(parent)

Description

state = Stateflow.State(parent) creates a Stateflow.State object in a parent chart, state,
or box.

Input Arguments

parent — Parent for new state
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object

Parent for the new state, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.State

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Content

Name — Name of state
'' (default) | character vector

Name of the state, specified as a character vector.

LabelString — Label for state
'?' (default) | character vector

2 API Object Reference

2-140



Label for the state, specified as a character vector. For more information, see “Specify Labels in
States and Transitions Programmatically” on page 1-16.

DuringAction — State during action
character vector

This property is read-only.

State during action, specified as a character vector. The value of this property depends on the
LabelString property for the state. For more information, see “Specify Labels in States and
Transitions Programmatically” on page 1-16. This property is not supported in Moore charts.

EntryAction — State entry action
character vector

This property is read-only.

State entry action, specified as a character vector. The value of this property depends on the
LabelString property for the state. For more information, see “Specify Labels in States and
Transitions Programmatically” on page 1-16. This property is not supported in Moore charts.

ExitAction — State exit action
character vector

This property is read-only.

State exit action, specified as a character vector. The value of this property depends on the
LabelString property for the state. For more information, see “Specify Labels in States and
Transitions Programmatically” on page 1-16. This property is not supported in Moore charts.

MooreAction — State action in Moore chart
character vector

This property is read-only.

State action in a Moore chart, specified as a character vector. The value of this property depends on
the LabelString property for the state. For more information, see “Specify Labels in States and
Transitions Programmatically” on page 1-16. This property is supported only in Moore charts. For
more information, see “Design Rules for Moore Charts”.

OnAction — State on actions
cell array of character vectors

This property is read-only.

State on actions, specified as a cell array of character vectors in the form

{'trigger1','action1',...,'triggerN','actionN'}

The value of this property depends on the LabelString property for the state. For more information,
see “Specify Labels in States and Transitions Programmatically” on page 1-16. This property is not
supported in Moore charts.

IsExplicitlyCommented — Whether to comment out state
false or 0 (default) | true or 1

 Stateflow.State

2-141



Whether to comment out the state, specified as a numeric or logical 1 (true) or 0 (false). Setting
this property to true is equivalent to right-clicking the state and selecting Comment Out. For more
information, see “Commenting Stateflow Objects in a Chart”.

IsImplicitlyCommented — Whether state is implicitly commented out
true or 1 | false or 0

This property is read-only.

Whether the state is implicitly commented out, specified as a numeric or logical 1 (true) or 0
(false). The state is implicitly commented out when you comment out a state or box that contains it.

CommentText — Comment text
'' (default) | character vector

Comment text added to the state, specified as a character vector. This property applies only when the
IsExplicitlyCommented property is true. In the Stateflow Editor, when you point to the comment
badge  on the state, the text appears as a tooltip. When you set the IsExplicitlyCommented
property to false, the value of CommentText reverts to ''.

Graphical Appearance

Position — Position and size of state
[0 0 90 60] (default) | [left top width height]

Position and size of the state, specified as a four-element numeric vector of the form [left top
width height].

BadIntersection — Whether state intersects a box, state, or function
true or 1 | false or 0

This property is read-only.

Whether the state graphically intersects a box, state, or function, specified as a numeric or logical 1
(true) or 0 (false).

IsGrouped — Whether state is a grouped state
false or 0 (default) | true or 1

Whether the state is a grouped state, specified as a numeric or logical 1 (true) or 0 (false). When
you copy and paste a grouped state, you copy not only the state but all of its contents. For more
information, see “Copy and Paste by Grouping” on page 2-24.

IsSubchart — Whether state is a subchart
false or 0 (default) | true or 1

Whether the state is a subchart, specified as a numeric or logical 1 (true) or 0 (false).

ContentPreviewEnabled — Whether to display preview of state contents
false or 0 (default) | true or 1

Whether to display a preview of the state contents, specified as a numeric or logical 1 (true) or 0
(false). This property applies only when the IsSubchart property is true.

2 API Object Reference

2-142



ArrowSize — Size of incoming transition arrows
8 (default) | scalar

Size of incoming transition arrows, specified as a scalar.

FontSize — Font size for state label
scalar

Font size for the state label, specified as a scalar. The StateFont.Size property of the chart that
contains the state sets the initial value of this property.

State Decomposition

Decomposition — Decomposition of substates
'EXCLUSIVE_OR' (default) | 'PARALLEL_AND'

Decomposition of substates at the top level of containment in the state, specified as
'EXCLUSIVE_OR' or 'PARALLEL_AND'. For more information, see “Specify Substate
Decomposition”.

Type — Decomposition of sibling states
'AND' | 'OR'

This property is read-only.

Decomposition of sibling states, specified as 'OR' or 'AND'. The state inherits this property from the
Decomposition property of its parent state or chart.

ExecutionOrder — Execution order in parallel (AND) decomposition
scalar

Execution order for the state in parallel (AND) decomposition, specified as an integer scalar. This
property applies only when both of these conditions are satisfied:

• The Type property of the state is 'AND'.
• The UserSpecifiedStateTransitionExecutionOrder property of the chart that contains the

state is true.

Active State Output

HasOutputData — Whether to create active state data output
false or 0 (default) | true or 1

Whether to create an active state data output port for the state, specified as a numeric or logical 1
(true) or 0 (false). For more information, see “Monitor State Activity Through Active State Data”.

OutputData — Active state data object
Stateflow.Data object

This property is read-only.

Active state data object for the state, specified as a Stateflow.Data object. This property applies
only when the HasOutputData property for the state is true.

OutputPortName — Name of active state data object
character vector

 Stateflow.State

2-143



Name of the active state data object for the state, specified as a character vector. This property
applies only when the HasOutputData property for the state is true.

OutputMonitoringMode — Monitoring mode for active state output
'SelfActivity' (default) | 'ChildActivity' | 'LeafStateActivity'

Monitoring mode for the active state output data, specified as 'SelfActivity',
'ChildActivity', or 'LeafStateActivity'.

EnumTypeName — Name of enumerated data type for active state data object
character vector

Name of the enumerated data type for the active state data object for the state, specified as a
character vector. This property applies only when the OutputMonitoringMode property for the
state is 'ChildActivity' or 'LeafStateActivity'. For more information, see “Enum Name”.

DoNotAutogenerateEnum — Whether to define enumerated data type manually
false or 0 (default) | true or 1

Whether to define the enumerated data type for the active state data output manually, specified as a
numeric or logical 1 (true) or 0 (false). This property applies only when the
OutputMonitoringMode property for the state is 'ChildActivity' or 'LeafStateActivity'.
For more information, see “Define State Activity Enumeration Type”.

Signal Logging

LoggingInfo — Signal logging properties
Stateflow.SigLoggingInfo object

Signal logging properties for the state, specified as a Stateflow.SigLoggingInfo object with
these properties:

• DataLogging — Whether to enable signal logging, specified as a numeric or logical 1 (true) or 0
(false).

• DecimateData — Whether to limit the amount of logged data, specified as a numeric or logical 1
(true) or 0 (false).

• Decimation — Decimation interval, specified as an integer scalar. This property applies only
when the DecimateData property is true.

• LimitDataPoints — Whether to limit the number of data points to log, specified as a numeric or
logical 1 (true) or 0 (false).

• MaxPoints — Maximum number of data points to log, specified as an integer scalar. This property
applies only when the LimitDataPoints property is true.

• NameMode — Source of the signal name, specified as 'SignalName' or 'Custom'.
• LoggingName — Custom signal name, specified as a character vector. This property applies only

when the NameMode property is 'Custom'.

For more information, see “Log Simulation Output for States and Data”.
Example: state.LoggingInfo.DataLogging = true;

2 API Object Reference

2-144



Debugging

Debug — Debugger properties
Stateflow.StateDebug object

Debugger properties for the state, specified as a Stateflow.StateDebug object with these
properties:

• OnEntry — Whether to set the On State Entry breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

• OnDuring — Whether to set the During State breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

• OnExit — Whether to set the On State Exit breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

For more information, see “Set Breakpoints to Debug Charts”.
Example: state.Debug.Breakpoints.OnEntry = true;
Example: state.Debug.Breakpoints.OnDuring = true;
Example: state.Debug.Breakpoints.OnExit = true;

TestPoint — Whether to set state as test point
false or 0 (default) | true or 1

Whether to set the state as a test point, specified as a numeric or logical 1 (true) or 0 (false). For
more information, see “Monitor Test Points in Stateflow Charts”.

Code Generation

InlineOption — Appearance in generated code
'Auto' (default) | 'Function' | 'Inline'

Appearance of the state functions in generated code, specified as one of these values:

• 'Auto' — An internal calculation determines the appearance of state functions in generated
code.

• 'Function' — State functions are implemented as separate C functions.
• 'Inline' — Calls to state functions are replaced by code.

For more information, see “Inline State Functions in Generated Code” (Simulink Coder).

Hierarchy

Chart — Chart that contains state
Stateflow.Chart object

This property is read-only.

Chart that contains the state, specified as a Stateflow.Chart object.

Subviewer — Subviewer for state
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

 Stateflow.State

2-145



This property is read-only.

Subviewer for the state, specified as a Stateflow.Chart, Stateflow.State, or Stateflow.Box
object. The subviewer is the chart or subchart where you can graphically view the state.

Machine — Machine that contains state
Stateflow.Machine object

This property is read-only.

Machine that contains the state, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the state in the model hierarchy, specified as a character vector.

Identification

Description — Description
'' (default) | character vector

Description for the state, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the state, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the state, specified as data of any type.

SSIdNumber — Session-independent identifier
scalar

This property is read-only.

Session-independent identifier, specified as an integer scalar. Use this property to distinguish the
state from other objects in the model.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Unlike SSIdNumber, the value of this property is
reassigned every time you start a new MATLAB session and may be recycled after an object is
deleted.

2 API Object Reference

2-146



Object Functions
find Identify specified objects in hierarchy
getChildren Identify children of object
getParent Identify parent of object
defaultTransitions Identify default transitions in specified object
innerTransitions Identify inner transitions with specified source
outerTransitions Identify outer transitions with specified source
sinkedTransitions Identify transitions with specified destination
sourcedTransitions Identify transitions with specified source
dialog Open properties dialog box
isCommented Determine if graphical object is commented out
view Display object in editing environment
highlight Highlight graphical object
fitToView Zoom in on graphical object

Examples

Add State to Chart

Add a state in the chart ch. Set its name to 'A'.

state = Stateflow.State(ch);
state.Name = 'A';

Enter Multiline Label in State

To enter a multiline label in the state state, you can:

• Call the MATLAB function sprintf and use the escape sequence \n to insert newline characters:

str = sprintf('A\nen: action1();\ndu: action2();\nen,du: action3();');
state.LabelString = str;

• Enter a concatenated text expression that uses the integer 10 as the ASCII equivalent of a newline
character:

str = ['A',10, ...
    'en: action1();',10, ...
    'du: action2();',10, ...
    'en,du: action3();'];
state.LabelString = str;

To extract the state name, entry action, and during action specified by the state label, enter:

 Stateflow.State

2-147



name = state.Name

name =

    'A'

entry = state.EntryAction

entry =

    ' action1();
      action3();'

during = state.DuringAction

during =

    ' action2();
      action3();'

For more information, see “Specify Labels in States and Transitions Programmatically” on page 1-16.

Add Supertransition from Subchart

Create a supertransition that connects junction j1, which is inside a subchart, to junction j2, which
is outside the subchart.

Save the original position of subchart st to a temporary workspace variable subchartPosition.

subchartPosition = st.Position;

Convert the subchart to a normal state by setting its IsSubchart and IsGrouped properties to
false.

st.IsSubchart = false;
st.IsGrouped = false;

When you convert a subchart to a normal state, it may change size to display its contents.

Add a transition that connects junction j1 to junction j2 in the chart ch.

tr = Stateflow.Transition(ch);
tr.Source = j1;
tr.Destination = j2;

2 API Object Reference

2-148



Revert the state to a subchart by setting its IsSubchart property to true. Restore the subchart to
its original position.

st.IsSubchart = true;
st.Position = subchartPosition;

The state A is now a subchart and the transition between the junctions is now a supertransition.

For more information, see “Move Between Levels of Hierarchy by Using Supertransitions”.

See Also
Stateflow.Box | Stateflow.Chart | Stateflow.Transition

Topics
“Overview of the Stateflow API” on page 1-2
“Represent Operating Modes by Using States”
“Specify Labels in States and Transitions Programmatically” on page 1-16
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.State

2-149



Stateflow.StateBreakpoints
Breakpoint properties for state

Description
Use a Stateflow.StateBreakpoints object to specify the breakpoint properties for a state,
atomic subchart, or Simulink based state. For more information, see “Set Breakpoints to Debug
Charts”.

Creation
Each state, atomic subchart, and Simulink based state has its own Stateflow.StateBreakpoints
object. To access the Stateflow.StateBreakpoints object, use the Debug.Breakpoints
property of the Stateflow.State, Stateflow.AtomicSubchart, or
Stateflow.SimulinkBasedState object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

OnEntry — Whether to set On State Entry breakpoint
false or 0 (default) | true or 1

Whether to set the On State Entry breakpoint, specified as a numeric or logical 1 (true) or 0
(false).

OnDuring — Whether to set During State breakpoint
false or 0 (default) | true or 1

Whether to set the During State breakpoint, specified as a numeric or logical 1 (true) or 0
(false).

OnExit — Whether to set On State Exit breakpoint
false or 0 (default) | true or 1

Whether to set the On State Exit breakpoint, specified as a numeric or logical 1 (true) or 0
(false).

Examples

Set Breakpoints for State

Access the Stateflow.StateDebug and Stateflow.StateBreakpoints objects for the
Stateflow.State object state.

2 API Object Reference

2-150



debug = state.Debug;
breakpoints = debug.Breakpoints;

Set the On State Entry, During State, and On State Exit breakpoints.

breakpoints.OnEntry = true;
breakpoints.OnDuring = true;
breakpoints.OnExit = true;

See Also
Stateflow.State | Stateflow.SimulinkBasedState | Stateflow.AtomicSubchart

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2
“Set Breakpoints to Debug Charts”

Introduced before R2006a

 Stateflow.StateBreakpoints

2-151



Stateflow.StateDebug
Debugger properties for state

Description
Use a Stateflow.StateDebug object to specify the debugger properties for a state, atomic
subchart, or Simulink based state.

Creation
Each state, atomic subchart, and Simulink based state has its own Stateflow.StateDebug object.
To access the Stateflow.StateDebug object, use the Debug property for the Stateflow.State,
Stateflow.AtomicSubchart, or Stateflow.SimulinkBasedState object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Breakpoints — Breakpoint properties
Stateflow.StateBreakpoints object

Breakpoint properties for the state, atomic subchart, or Simulink based state, specified as a
Stateflow.StateBreakpoints object with these properties:

• OnEntry — Whether to set the On State Entry breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

• OnDuring — Whether to set the During State breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

• OnExit — Whether to set the On State Exit breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

For more information, see “Set Breakpoints to Debug Charts”.

Examples

Set Breakpoints for State

Access the Stateflow.StateDebug and Stateflow.StateBreakpoints objects for the
Stateflow.State object state.

debug = state.Debug;
breakpoints = debug.Breakpoints;

2 API Object Reference

2-152



Set the On State Entry, During State, and On State Exit breakpoints.

breakpoints.OnEntry = true;
breakpoints.OnDuring = true;
breakpoints.OnExit = true;

See Also
Stateflow.State | Stateflow.SimulinkBasedState | Stateflow.AtomicSubchart

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2
“Set Breakpoints to Debug Charts”

Introduced before R2006a

 Stateflow.StateDebug

2-153



Stateflow.StateFont
Font for box, function, and state labels

Description
Use a Stateflow.StateFont object to specify the font properties for box, function, and state labels
in a chart.

Creation
Each chart has its own Stateflow.StateFont object. To access the Stateflow.StateFont
object, use the StateFont property for the Stateflow.Chart object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Name — Font name
'Helvetica' (default) | character vector

Font name, specified as a character vector. This property also determines the font for annotations in
the chart.

Angle — Font angle
'NORMAL' (default) | 'ITALIC'

Font angle, specified as 'NORMAL' or 'ITALIC'.

Weight — Font weight
'NORMAL' (default) | 'BOLD'

Font weight, specified as 'NORMAL' or 'BOLD'.

Size — Default font size
12 (default) | scalar

Default font size for new boxes, functions, and states in the chart, specified as a scalar. This property
also determines the default font size for new annotations in the chart.

Examples

Change Font Properties for State Labels

Access the Stateflow.StateFont object for the Stateflow.Chart object ch.

2 API Object Reference

2-154



font = ch.StateFont;

Set the font for box, function, and state labels to Arial. Set the font angle to italics and the font
weight to bold. Set the default font size to 8.

font.Name = 'Arial';
font.Angle = 'ITALIC';
font.Weight = 'BOLD';
font.Size = 8;

See Also
Stateflow.Chart

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.StateFont

2-155



Stateflow.StateTransitionTableChart
Tabular representation of state machine for modal logic

Description
Use a Stateflow.StateTransitionTableChart object to create a tabular representation of a
finite state machine for modal logic. The benefits of using state transition tables include:

• The ease of modeling train-like state machines, where the modal logic involves transitions from
one state to its neighbor

• A concise, compact format for a state machine
• Reduced maintenance of graphical objects

For more information, see “State Transition Tables in Stateflow”.

Creation
To create a Stateflow.StateTransitionTableChart object, call the function sfnew with the -
STT argument. For example, to create a State Transition Table block in a new Simulink model called
myModel, enter:

sfnew -STT myModel

Alternatively, you can add a new State Transition Table block to an existing model by using the
function add_block:

add_block('sflib/State Transition Table','myModel/State Transition Table')

Then, to access the Stateflow.StateTransitionTableChart object, call the find function for
the Simulink.Root object:

rt = sfroot;
table = find(rt,'-isa','Stateflow.StateTransitionTableChart', ...
    'Path','myModel/State Transition Table');

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Content

Name — Name of state transition table
'State Transition Table' (default) | character vector

Name of the state transition table, specified as a character vector.

2 API Object Reference

2-156



ActionLanguage — Action language
'MATLAB' (default) | 'C'

Action language used to program the state transition table, specified as 'MATLAB' or 'C'. For more
information, see “Differences Between MATLAB and C as Action Language Syntax”.

StateMachineType — State machine semantics
'Classic' (default) | 'Mealy' | 'Moore'

State machine semantics implemented by the state transition table, specified as 'Classic',
'Mealy', or 'Moore'. For more information, see “Overview of Mealy and Moore Machines”.

SupportVariableSizing — Whether state transition table supports variable-size data
true or 1 (default) | false or 0

Whether the state transition table supports variable-size data, specified as a numeric or logical 1
(true) or 0 (false). Only variable-size data can change dimension during simulation. For more
information, see “Declare Variable-Size Data in Stateflow Charts”.

Chart Initialization

ExecuteAtInitialization — Whether to initialize state configuration
false or 0 (default) | true or 1

Whether to initialize the state configuration of the state transition table at time zero instead of at the
first input event, specified as a numeric or logical 1 (true) or 0 (false). For more information, see
“Execution of a Chart at Initialization”.

StatesWhenEnabling — Behavior of states when event reenables state transition table
'' (default) | 'held' | 'reset'

Behavior of the states when a function-call input event reenables the state transition table, specified
as one of these values:

• '' — The state transition table does not contain function-call input events.
• 'held' — The state transition table maintains the most recent values of the states.
• 'reset' — The state transition table reverts to the initial conditions of the states.

For more information, see “Control States in Charts Enabled by Function-Call Input Events”.

InitializeOutput — Whether to initialize output data
false or 0 (default) | true or 1

Whether to initialize the output data every time the state transition table wakes up, specified as a
numeric or logical 1 (true) or 0 (false). For more information, see “Initialize outputs every time
chart wakes up”.

Active State Output

HasOutputData — Whether to create active state data output
false or 0 (default) | true or 1

Whether to create an active state data output port for the state transition table, specified as a
numeric or logical 1 (true) or 0 (false). For more information, see “Monitor State Activity Through
Active State Data”.

 Stateflow.StateTransitionTableChart

2-157



OutputData — Active state data object
Stateflow.Data object

This property is read-only.

Active state data object for the state transition table, specified as a Stateflow.Data object. This
property applies only when the HasOutputData property for the state transition table is true.

OutputPortName — Name of active state data object
character vector

Name of the active state data object for the state transition table, specified as a character vector. This
property applies only when the HasOutputData property for the state transition table is true.

OutputMonitoringMode — Monitoring mode for active state output
'ChildActivity' (default) | 'LeafStateActivity'

Monitoring mode for the active state output data, specified as 'ChildActivity' or
'LeafStateActivity'.

EnumTypeName — Name of enumerated data type for active state data object
character vector

Name of the enumerated data type for the active state data object for the state transition table,
specified as a character vector. For more information, see “Enum Name”.

DoNotAutogenerateEnum — Whether to define enumerated data type manually
false or 0 (default) | true or 1

Whether to define the enumerated data type for the active state data output manually, specified as a
numeric or logical 1 (true) or 0 (false). For more information, see “Define State Activity
Enumeration Type”.

Discrete and Continuous-Time Semantics

ChartUpdate — Activation method for state transition table
'INHERITED' (default) | 'CONTINUOUS' | 'DISCRETE'

Activation method for the state transition table, specified as 'CONTINUOUS', 'DISCRETE', or
'INHERITED'. For more information, see “Update Method”.

SampleTime — Sample time for activating state transition table
'-1' (default) | character vector

Sample time for activating the state transition table, specified as a character vector. This property
applies only when the ChartUpdate property for the state transition table is 'DISCRETE'.

EnableZeroCrossings — Whether to enable zero-crossing detection
true or 1 (default) | false or 0

Whether to enable zero-crossing detection on state transitions in the state transition table, specified
as a numeric or logical 1 (true) or 0 (false). This property applies only when the ChartUpdate
property for the state transition table is set to 'CONTINUOUS'. For more information, see “Disable
Zero-Crossing Detection”.

2 API Object Reference

2-158



Super Step Semantics

EnableNonTerminalStates — Whether to enable super step semantics
false or 0 (default) | true or 1

Whether to enable super step semantics for the state transition table, specified as a numeric or
logical 1 (true) or 0 (false). For more information, see “Super Step Semantics”.

NonTerminalMaxCounts — Maximum number of transitions in one super step
1000 (default) | scalar

Maximum number of transitions the state transition table can take in one super step, specified as an
integer scalar. This property applies only when the EnableNonTerminalStates property for the
state transition table is true.

NonTerminalUnstableBehavior — Behavior if super step exceeds maximum number of
transitions
'Proceed' (default) | 'Throw Error'

Behavior if a super step for the state transition table exceeds the maximum number of transitions
specified in the NonTerminalMaxCounts property before reaching a stable state, specified as one of
these values:

• 'Proceed' — The state transition table goes to sleep with the last active state configuration.
• 'Throw Error' — The state transition table generates an error.

This property applies only when the EnableNonTerminalStates property for the state transition
table is true.

Integer and Fixed-Point Data

SaturateOnIntegerOverflow — Whether data saturates on integer overflow
true or 1 (default) | false or 0

Whether the data in the state transition table saturates on integer overflow, specified as a numeric or
logical 1 (true) or 0 (false). When this property is disabled, the data in the state transition table
wraps on integer overflow. For more information, see “Handle Integer Overflow for Chart Data”.

TreatAsFi — Inherited Simulink signals to treat as fi objects
'Fixed-point' (default) | 'Fixed-point & Integer'

Inherited Simulink signals to treat as Fixed-Point Designer fi objects, specified as one of these
values:

• 'Fixed-point' — The state transition table treats all fixed-point inputs as fi objects.
• 'Fixed-point & Integer' — The state transition table treats all fixed-point and integer inputs

as fi objects.

This property applies only when the ActionLanguage property of the state transition table is
'MATLAB'.

EmlDefaultFimath — Default fimath properties
'Same as MATLAB Default' (default) | 'Other:UserSpecified'

Default fimath properties for the state transition table, specified as one of these values:

 Stateflow.StateTransitionTableChart

2-159



• 'Same as MATLAB Default' — Use the same fimath properties as the current default fimath
object.

• 'Other:UserSpecified' — Use the InputFimath property to specify the default fimath
object.

This property applies only when the ActionLanguage property of the state transition table is
'MATLAB'.

InputFimath — Default fimath object
character vector

Default fimath object, specified as a character vector. When the EmlDefaultFimath property for
the state transition table is 'Other:UserSpecified', you can use this property to:

• Enter an expression that constructs a fimath object.
• Enter the variable name for a fimath object in the MATLAB or model workspace.

This property applies only when the ActionLanguage property of the state transition table is
'MATLAB'.

C Action Language

StrongDataTypingWithSimulink — Whether to use strong data typing
true or 1 (default) | false or 0

Whether to use strong data typing when the state transition table interfaces with Simulink input and
output signals, specified as a numeric or logical 1 (true) or 0 (false). This property applies only to
state transition tables that use C as the action language. For more information, see “Use strong data
typing with Simulink I/O”.

EnableBitOps — Whether to use bit operations
false or 0 (default) | true or 1

Whether to use bit operations in state and transition actions in the state transition table, specified as
a numeric or logical 1 (true) or 0 (false). This property applies only to state transition tables that
use C as the action language. For more information, see “Enable C-bit operations”.

Debugging

Debug — Debugger properties
Stateflow.ChartDebug object

Debugger properties for the state transition table, specified as a Stateflow.ChartDebug object
with this property:

• Breakpoints.OnEntry — Whether to set the On Chart Entry breakpoint, specified as a
numeric or logical 1 (true) or 0 (false).

For more information, see “Set Breakpoints to Debug Charts”.
Example: table.Debug.Breakpoints.OnEntry = true;

Graphical Appearance

Editor — Editor
Stateflow.Editor object

2 API Object Reference

2-160



This property is read-only.

Editor for the state transition table, specified as a Stateflow.Editor object. You can use this object
to control the position, size, and magnification level of the Stateflow Editor window.

Visible — Whether editor is displaying state transition table
true or 1 | false or 0

Whether the Stateflow Editor window is displaying the state transition table, specified as a numeric
or logical 1 (true) or 0 (false).

ChartColor — Background color
[1 0.9608 0.8824] (default) | [red green blue]

Background color for the chart that is automatically generated for the state transition table, specified
as a three-element numeric vector of the form [red green blue] that specifies the red, green, and
blue values. Each element must be in the range between 0 and 1.

StateColor — Color for states
[0 0 0] (default) | [red green blue]

Color for the states in the chart that is automatically generated for the state transition table,
specified as a three-element numeric vector of the form [red green blue] that specifies the red,
green, and blue values. Each element must be in the range between 0 and 1.

TransitionColor — Color for transitions
[0.2902 0.3294 0.6039] (default) | [red green blue]

Color for transitions in the chart that is automatically generated for the state transition table,
specified as a three-element numeric vector of the form [red green blue] that specifies the red,
green, and blue values. Each element must be in the range between 0 and 1.

JunctionColor — Color for junctions
[0.6824 0.3294 0] (default) | [red green blue]

Color for junctions in the chart that is automatically generated for the state transition table, specified
as a three-element numeric vector of the form [red green blue] that specifies the red, green, and
blue values. Each element must be in the range between 0 and 1.

StateFont — Font for state labels
Stateflow.STTStateFont object

Font for the state labels in the chart that is automatically generated for the state transition table,
specified as a Stateflow.STTStateFont object with these properties:

• Name — Font name, specified as a character vector.
• Angle — Font angle, specified as 'NORMAL' or 'ITALIC'.
• Weight — Font weight, specified as 'NORMAL' or 'BOLD'.
• Size — Default font size for new states, specified as a scalar.

Example: table.StateFont.Name = 'Arial';
Example: table.StateFont.Angle = 'ITALIC';
Example: table.StateFont.Weight = 'BOLD;

 Stateflow.StateTransitionTableChart

2-161



Example: table.StateFont.Size = 8;

StateLabelColor — Color for state labels
[0 0 0] (default) | [red green blue]

Color for the state labels in the chart that is automatically generated for the state transition table,
specified as a three-element numeric vector of the form [red green blue] that specifies the red,
green, and blue values. Each element must be in the range between 0 and 1.

TransitionFont — Font for transition labels
Stateflow.STTTransFont object

Font for the transition labels in the chart that is automatically generated for the state transition table,
specified as a Stateflow.STTTransFont object with these properties:

• Name — Font name, specified as a character vector.
• Angle — Font angle, specified as 'NORMAL' or 'ITALIC'.
• Weight — Font weight, specified as 'NORMAL' or 'BOLD'.
• Size — Default font size for new transitions, specified as a scalar.

Example: table.TransitionFont.Name = 'Arial';
Example: table.TransitionFont.Angle = 'ITALIC';
Example: table.TransitionFont.Weight = 'BOLD';
Example: table.TransitionFont.Size = 8;

TransitionLabelColor — Color for transition labels
[0.2902 0.3294 0.6039] (default) | [red green blue]

Color for the transition labels in the chart that is automatically generated for the state transition
table, specified as a three-element numeric vector of the form [red green blue] that specifies the
red, green, and blue values. Each element must be in the range between 0 and 1.

Hierarchy

Machine — Machine that contains state transition table
Stateflow.Machine object

This property is read-only.

Machine that contains the state transition table, specified as a Stateflow.Machine object.

Path — Location of state transition table in model hierarchy
character vector

This property is read-only.

Location of the state transition table in the model hierarchy, specified as a character vector.

Dirty — Whether state transition table has changed
true or 1 | false or 0

Whether the state transition table has changed after being opened or saved, specified as a numeric or
logical 1 (true) or 0 (false).

2 API Object Reference

2-162



Locked — Whether state transition table is locked
false or 0 (default) | true or 1

Whether the state transition table is locked, specified as a numeric or logical 1 (true) or 0 (false).
Enable this property to prevent changes in the state transition table.

Iced — Whether state transition table is locked
false or 0 (default) | true or 1

This property is read-only.

Whether the state transition table is locked, specified as a numeric or logical 1 (true) or 0 (false).
This property is equivalent to the property Locked, but is used internally to prevent changes in the
state transition table during simulation.

Identification

Description — Description
'' (default) | character vector

Description for the state transition table, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the state transition table, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the state transition table, specified as data of any type.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Use this property to distinguish the state transition
table from other objects in the model. The value of this property is reassigned every time you start a
new MATLAB session and may be recycled after an object is deleted.

Object Functions
find Identify specified objects in hierarchy
getChildren Identify children of object
dialog Open properties dialog box
view Display object in editing environment

Examples
Create Empty State Transition Table

Call the function sfnew with the -STT argument to open a new Simulink model that contains an
empty State Transition Table block.

 Stateflow.StateTransitionTableChart

2-163



sfnew -STT

Access the Simulink.Root object by calling the sfroot function.

rt = sfroot;

Access the Stateflow.StateTransitionTableChart object by calling the find function for the
Simulink.Root object.

table = find(rt,'-isa','Stateflow.StateTransitionTableChart');

See Also
Blocks
State Transition Table

Functions
sfnew | sfroot | add_block

Topics
“Overview of the Stateflow API” on page 1-2
“Finite State Machine Concepts”
“State Transition Tables in Stateflow”
“List of Stateflow API Properties” on page 4-2

Introduced in R2012b

2 API Object Reference

2-164



Stateflow.STTStateFont
Font for state labels in state transition tables

Description
Use a Stateflow.STTStateFont object to specify the font properties for state labels in the chart
that is automatically generated for a state transition table.

Creation
Each state transition table has its own Stateflow.STTStateFont object. To access the
Stateflow.STTStateFont object, use the StateFont property for the
Stateflow.StateTransitionTableChart object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Name — Font name
'Helvetica' (default) | character vector

Font name, specified as a character vector.

Angle — Font angle
'NORMAL' (default) | 'ITALIC'

Font angle, specified as 'NORMAL' or 'ITALIC'.

Weight — Font weight
'NORMAL' (default) | 'BOLD'

Font weight, specified as 'NORMAL' or 'BOLD'.

Size — Default font size
12 (default) | scalar

Default font size for new states in the state transition table, specified as a scalar.

Examples

Change Font Properties for State Labels

Access the Stateflow.STTStateFont object for the Stateflow.StateTransitionTableChart
object stt.

 Stateflow.STTStateFont

2-165



font = stt.StateFont;

Set the font for state labels to Arial. Set the font angle to italics and the font weight to bold. Set the
default font size to 8.

font.Name = 'Arial';
font.Angle = 'ITALIC';
font.Weight = 'BOLD';
font.Size = 8;

See Also
Stateflow.StateTransitionTableChart

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

2 API Object Reference

2-166



Stateflow.STTTransFont
Font properties for transition labels in state transition tables

Description
Use a Stateflow.STTTransFont object to specify the font properties for transition labels in the
chart that is automatically generated for a state transition table.

Creation
Each state transition table has its own Stateflow.STTTransFont object. To access the
Stateflow.STTTransFont object, use the TransitionFont property for the
Stateflow.StateTransitionTableChart object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Name — Font name
'Helvetica' (default) | character vector

Font name, specified as a character vector.

Angle — Font angle
'NORMAL' (default) | 'ITALIC'

Font angle, specified as 'NORMAL' or 'ITALIC'.

Weight — Font weight
'NORMAL' (default) | 'BOLD'

Font weight, specified as 'NORMAL' or 'BOLD'.

Size — Default font size
12 (default) | scalar

Default font size for new transitions in the state transition table, specified as a scalar.

Examples

Change Font Properties for Transition Labels

Access the Stateflow.STTTransFont object for the Stateflow.StateTransitionTableChart
object stt.

 Stateflow.STTTransFont

2-167



font = stt.TransitionFont;

Set the font for transition labels to Arial. Set the font angle to italics and the font weight to bold. Set
the default font size to 8.

font.Name = 'Arial';
font.Angle = 'ITALIC';
font.Weight = 'BOLD';
font.Size = 8;

See Also
Stateflow.StateTransitionTableChart

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

2 API Object Reference

2-168



Stateflow.TransBreakpoints
Breakpoint properties for transition

Description
Use a Stateflow.TransBreakpoints object to specify the breakpoint properties for a transition.
For more information, see “Set Breakpoints to Debug Charts”.

Creation
Each transition has its own Stateflow.TransBreakpoints object. To access the
Stateflow.TransBreakpoints object, use the Debug.Breakpoints property of the
Stateflow.Transition object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

WhenTested — Whether to set When Transition is Tested breakpoint
false or 0 (default) | true or 1

Whether to set the When Transition is Tested breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

WhenValid — Whether to set When Transition is Valid breakpoint
false or 0 (default) | true or 1

Whether to set the When Transition is Valid breakpoint, specified as a numeric or logical 1
(true) or 0 (false).

Examples

Set Breakpoints for Transition

Access the Stateflow.TransDebug and Stateflow.TransBreakpoints objects for the
Stateflow.Transition object transition.

debug = transition.Debug;
breakpoints = debug.Breakpoints;

Set the When Transition is Tested and When Transition is Valid breakpoints.

 Stateflow.TransBreakpoints

2-169



breakpoints.WhenTested = true;
breakpoints.WhenValid = true;

See Also
Stateflow.Transition

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2
“Set Breakpoints to Debug Charts”

Introduced before R2006a

2 API Object Reference

2-170



Stateflow.TransDebug
Debugger properties for transition

Description
Use a Stateflow.TransDebug object to specify the debugger properties for a transition.

Creation
Each transition has its own Stateflow.TransDebug object. To access the
Stateflow.TransDebug object, use the Debug property for the Stateflow.Transition object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Breakpoints — Breakpoint properties
Stateflow.TransBreakpoints object

Breakpoint properties for the transition, specified as a Stateflow.TransBreakpoints object with
these properties:

• WhenTested — Whether to set the When Transition is Tested breakpoint, specified as a
numeric or logical 1 (true) or 0 (false).

• WhenValid — Whether to set the When Transition is Valid breakpoint, specified as a
numeric or logical 1 (true) or 0 (false).

For more information, see “Set Breakpoints to Debug Charts”.

Examples

Set Breakpoints for Transition

Access the Stateflow.TransDebug and Stateflow.TransBreakpoints objects for the
Stateflow.Transition object transition.

debug = transition.Debug;
breakpoints = debug.Breakpoints;

Set the When Transition is Tested and When Transition is Valid breakpoints.

 Stateflow.TransDebug

2-171



breakpoints.WhenTested = true;
breakpoints.WhenValid = true;

See Also
Stateflow.Transition

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2
“Set Breakpoints to Debug Charts”

Introduced before R2006a

2 API Object Reference

2-172



Stateflow.TransFont
Font properties for transition labels

Description
Use a Stateflow.TransFont object to specify the font properties for transition labels in a chart.

Creation
Each chart has its own Stateflow.TransFont object. To access the Stateflow.TransFont
object, use the TransitionFont property for the Stateflow.Chart object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Name — Font name
'Helvetica' (default) | character vector

Font name, specified as a character vector.

Angle — Font angle
'NORMAL' (default) | 'ITALIC'

Font angle, specified as 'NORMAL' or 'ITALIC'.

Weight — Font weight
'NORMAL' (default) | 'BOLD'

Font weight, specified as 'NORMAL' or 'BOLD'.

Size — Default font size
12 (default) | scalar

Default font size for new transitions in the chart, specified as a scalar.

Examples

Change Font Properties for Transition Labels

Access the Stateflow.TransFont object for the Stateflow.Chart object ch.

font = ch.TransitionFont;

 Stateflow.TransFont

2-173



Set the font for transition labels to Arial. Set the font angle to italics and the font weight to bold. Set
the default font size to 8.

font.Name = 'Arial';
font.Angle = 'ITALIC';
font.Weight = 'BOLD';
font.Size = 8;

See Also
Stateflow.Chart

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

2 API Object Reference

2-174



Stateflow.Transition
Transition in chart, state, box, or function

Description
Use Stateflow.Transition objects to create transitions from one operating mode to another. For
more information, see “Transition Between Operating Modes”.

Creation

Syntax
transition = Stateflow.Transition(parent)

Description

transition = Stateflow.Transition(parent) creates a Stateflow.Transition object in a
parent chart, state, box, or graphical function.

Input Arguments

parent — Parent for new transition
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

Parent for the new transition, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.Function
• Stateflow.State

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Content

LabelString — Label for transition
'' (default) | character vector

Label for the transition, specified as a character vector. For more information, see “Specify Labels in
States and Transitions Programmatically” on page 1-16.

 Stateflow.Transition

2-175



Condition — Transition condition
character vector

This property is read-only.

Transition condition, specified as a character vector. The value of this property depends on the
LabelString property for the transition. For more information, see “Specify Labels in States and
Transitions Programmatically” on page 1-16.

ConditionAction — Transition condition action
character vector

This property is read-only.

Transition condition action, specified as a character vector. The value of this property depends on the
LabelString property for the transition. For more information, see “Specify Labels in States and
Transitions Programmatically” on page 1-16.

TransitionAction — Transition action
character vector

This property is read-only.

Transition action, specified as a character vector. The value of this property depends on the
LabelString property for the transition. For more information, see “Specify Labels in States and
Transitions Programmatically” on page 1-16.

Trigger — Transition trigger
character vector

This property is read-only.

Transition trigger, specified as a character vector. The value of this property depends on the
LabelString property for the transition. For more information, see “Specify Labels in States and
Transitions Programmatically” on page 1-16.

ExecutionOrder — Execution order for transition
scalar

Execution order for the transition when its source is active, specified as an integer scalar. This
property applies only when the UserSpecifiedStateTransitionExecutionOrder property of
the chart that contains the transition is true. For more information, see “Transition Evaluation
Order”.

IsExplicitlyCommented — Whether to comment out transition
false or 0 (default) | true or 1

Whether to comment out the transition, specified as a numeric or logical 1 (true) or 0 (false).
Setting this property to true is equivalent to right-clicking the transition and selecting Comment
Out. For more information, see “Commenting Stateflow Objects in a Chart”.

IsImplicitlyCommented — Whether transition is implicitly commented out
true or 1 | false or 0

This property is read-only.

2 API Object Reference

2-176



Whether the transition is implicitly commented out, specified as a numeric or logical 1 (true) or 0
(false). The transition is implicitly commented out when you comment out its source, its destination,
or a state, box, or function that contains it.

CommentText — Comment text
'' (default) | character vector

Comment text added to the transition, specified as a character vector. This property applies only
when the IsExplicitlyCommented property is true. In the Stateflow Editor, when you point to the
comment badge  on the transition, the text appears as a tooltip. When you set the
IsExplicitlyCommented property to false, the value of CommentText reverts to ''.

Graphical Appearance

Source — Source of transition
[] (default) | Stateflow.AtomicSubchart object | object | Stateflow.Junction object |
Stateflow.SimulinkBasedState object | Stateflow.State

Source of the transition, specified as an empty array or a Stateflow API object of one of these types:

• Stateflow.AtomicSubchart
• Stateflow.Junction
• Stateflow.SimulinkBasedState
• Stateflow.State

SourceEndPoint — Position of transition endpoint at source
[2 2] (default) | [x y]

Position of the transition endpoint at its source, specified as a two-element numeric vector [x y] of
coordinates relative to the upper left corner of the chart.

SourceOClock — Location of transition endpoint at source
0 (default) | scalar between 0 and 12

Location of the transition endpoint at its source, specified as a scalar between 0 and 12 that
describes a clock position.

Destination — Destination of transition
[] (default) | Stateflow.AtomicSubchart object | object | Stateflow.Junction object |
Stateflow.SimulinkBasedState object | Stateflow.State

Destination of the transition, specified as an empty array or a Stateflow API object of one of these
types:

• Stateflow.AtomicSubchart
• Stateflow.Junction
• Stateflow.SimulinkBasedState
• Stateflow.State

DestinationEndPoint — Position of transition endpoint at destination
[40 40] (default) | [x y]

 Stateflow.Transition

2-177



Position of the transition endpoint at its destination, specified as a two-element numeric vector [x y]
of coordinates relative to the upper left corner of the chart.

DestinationOClock — Location of transition endpoint at destination
0 (default) | scalar between 0 and 12

Location of the transition endpoint at its destination, specified as a scalar between 0 and 12 that
describes a clock position.

MidPoint — Position of midpoint of transition
[21 21] (default) | [x y]

Position of the midpoint of the transition, specified as a two-element numeric vector [x y] of
coordinates relative to the upper left corner of the chart.

LabelPosition — Position and size of transition label
[0 0 8 14] (default) | [left top width height]

Position and size of the transition label, specified as a four-element numeric vector of the form [left
top width height].

ArrowSize — Size of transition arrow
scalar

Size of the transition arrow at the destination, specified as a scalar. When you change the destination
of the transition, this property resets to the value of the ArrowSize property of the new destination.

FontSize — Font size for transition label
scalar

Font size for the transition label, specified as a scalar. The TransitionFont.Size property of the
chart that contains the transition sets the initial value of this property.

Debugging

Debug — Debugger properties
Stateflow.TransDebug object

Debugger properties for the transition, specified as a Stateflow.TransDebug object with these
properties:

• Breakpoints.WhenTested — Whether to set the When Transition is Tested breakpoint,
specified as a numeric or logical 1 (true) or 0 (false).

• Breakpoints.WhenValid — Whether to set the When Transition is Valid breakpoint,
specified as a numeric or logical 1 (true) or 0 (false).

For more information, see “Set Breakpoints to Debug Charts”.
Example: transition.Debug.Breakpoints.WhenTested = true;
Example: transition.Debug.Breakpoints.WhenValid = true;

Code Generation

IsVariant — Whether transition is a variant transition
false or 0 (default) | true or 1

2 API Object Reference

2-178



Whether the transition is a variant transition, specified as a numeric or logical 1 (true) or 0 (false).
For more information, see “Code Generation Using Variant Transitions”.

Hierarchy

Chart — Chart that contains transition
Stateflow.Chart object

This property is read-only.

Chart that contains the transition, specified as a Stateflow.Chart object.

Subviewer — Subviewer for transition
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

This property is read-only.

Subviewer for the transition, specified as a Stateflow.Chart, Stateflow.State,
Stateflow.Box, or Stateflow.Function object. The subviewer is the chart or subchart where
you can graphically view the transition.

Machine — Machine that contains transition
Stateflow.Machine object

This property is read-only.

Machine that contains the transition, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the transition in the model hierarchy, specified as a character vector.

Identification

Description — Description
'' (default) | character vector

Description for the transition, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the transition, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the transition, specified as data of any type.

SSIdNumber — Session-independent identifier
scalar

 Stateflow.Transition

2-179



This property is read-only.

Session-independent identifier, specified as an integer scalar. Use this property to distinguish the
transition from other objects in the model.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Unlike SSIdNumber, the value of this property is
reassigned every time you start a new MATLAB session and may be recycled after an object is
deleted.

Object Functions
getParent Identify parent of object
dialog Open properties dialog box
isCommented Determine if graphical object is commented out
view Display object in editing environment
highlight Highlight graphical object
fitToView Zoom in on graphical object

Examples

Add Transition to Chart

Add a transition that connects state s1 to state s2 in the chart ch.

transition = Stateflow.Transition(ch);
transition.Source = s1;
transition.Destination = s2;

Label Transitions

Add a label that specifies a trigger, condition, and condition action on the transition transition.

transition.LabelString = 'trigger[guard]{action();}';

To extract the trigger, condition, and condition action specified by the transition label, enter:

trigger = transition.Trigger

2 API Object Reference

2-180



trigger =

    'trigger'

condition = transition.Condition

condition =

    'guard'

action = transition.ConditionAction

action =

    'action();'

Add a Default Transition

Create a Stateflow.Transition object in the Stateflow.Chart object ch.

dt = Stateflow.Transition(ch);

Set the destination of the transition to the Stateflow.State object st.

dt.Destination = st;
dt.DestinationOClock = 0;

Place the source endpoint for the transition 30 pixels above the destination endpoint. Place the
midpoint for the transition 15 pixels above the destination endpoint.

dt.SourceEndPoint = dt.DestinationEndPoint-[0 30];
dt.MidPoint = dt.DestinationEndPoint-[0 15];

Add Supertransition from Subchart

Create a supertransition that connects junction j1, which is inside a subchart, to junction j2, which
is outside the subchart.

Save the original position of subchart st to a temporary workspace variable subchartPosition.

subchartPosition = st.Position;

 Stateflow.Transition

2-181



Convert the subchart to a normal state by setting its IsSubchart and IsGrouped properties to
false.

st.IsSubchart = false;
st.IsGrouped = false;

When you convert a subchart to a normal state, it may change size to display its contents.

Add a transition that connects junction j1 to junction j2 in the chart ch.

tr = Stateflow.Transition(ch);
tr.Source = j1;
tr.Destination = j2;

Revert the state to a subchart by setting its IsSubchart property to true. Restore the subchart to
its original position.

st.IsSubchart = true;
st.Position = subchartPosition;

The state A is now a subchart and the transition between the junctions is now a supertransition.

For more information, see “Move Between Levels of Hierarchy by Using Supertransitions”.

See Also
Stateflow.AtomicSubchart | Stateflow.Chart | Stateflow.Function |
Stateflow.Junction | Stateflow.SimulinkBasedState | Stateflow.State

Topics
“Overview of the Stateflow API” on page 1-2
“Transition Between Operating Modes”
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

2 API Object Reference

2-182



Stateflow.TruthTable
Truth table function in chart, state, box, or function

Description
Use Stateflow.TruthTable objects to create truth table functions that implement combinatorial
logic design in a concise, tabular format. Typical applications include decision making for:

• Fault detection and management
• Mode switching

You can call a truth table function in the actions of states and transitions. For more information, see
“Use Truth Tables to Model Combinatorial Logic”.

Creation

Syntax
function = Stateflow.TruthTable(parent)

Description

function = Stateflow.TruthTable(parent) creates a Stateflow.TruthTable object in a
parent chart, state, box, or function.

Input Arguments

parent — Parent for new truth table
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

Parent for the new truth table, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.Function
• Stateflow.State

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

 Stateflow.TruthTable

2-183



Content

Name — Name of truth table
'' (default) | character vector

Name of the truth table, specified as a character vector.

LabelString — Label for truth table
'?' (default) | character vector

Label for the truth table, specified as a character vector.

ActionTable — Action table
cell array of character vectors

Action table for the truth table, specified as a cell array of character vectors.

ConditionTable — Condition table
cell array of character vectors

Condition table for the truth table, specified as a cell array of character vectors.

Language — Action language
'MATLAB' (default) | 'C'

Action language used to program the truth table, specified as 'MATLAB' or 'C'. The option 'C' is
supported only in truth tables in charts that use C as the action language. For more information, see
“Differences Between MATLAB and C as Action Language Syntax”.

IsExplicitlyCommented — Whether to comment out truth table
false or 0 (default) | true or 1

Whether to comment out the truth table, specified as a numeric or logical 1 (true) or 0 (false).
Setting this property to true is equivalent to right-clicking the truth table and selecting Comment
Out. For more information, see “Commenting Stateflow Objects in a Chart”.

IsImplicitlyCommented — Whether truth table is implicitly commented out
true or 1 | false or 0

This property is read-only.

Whether the truth table is implicitly commented out, specified as a numeric or logical 1 (true) or 0
(false). The truth table is implicitly commented out when you comment out a state, box, or function
that contains it.

CommentText — Comment text
'' (default) | character vector

Comment text added to the truth table, specified as a character vector. This property applies only
when the IsExplicitlyCommented property is true. In the Stateflow Editor, when you point to the
comment badge  on the truth table, the text appears as a tooltip. When you set the
IsExplicitlyCommented property to false, the value of CommentText reverts to ''.

2 API Object Reference

2-184



Graphical Appearance

Position — Position and size of truth table
[0 0 90 60] (default) | [left top width height]

Position and size of the truth table, specified as a four-element numeric vector of the form [left
top width height].

BadIntersection — Whether function intersects a box, state, or function
true or 1 | false or 0

This property is read-only.

Whether the truth table graphically intersects a box, state, or function, specified as a numeric or
logical 1 (true) or 0 (false).

FontSize — Font size for truth table label
scalar

Font size for the truth table label, specified as a scalar. The StateFont.Size property of the chart
that contains the truth table sets the initial value of this property.

Debugging

OverSpecDiagnostic — Level of diagnostic when truth table is overspecified
'Error' (default) | 'Warning' | 'None'

Level of diagnostic action when the truth table is overspecified, specified as 'Error', 'Warning', or
'None'. For more information, see “Correct Overspecified and Underspecified Truth Tables”.

UnderSpecDiagnostic — Level of diagnostic when truth table is underspecified
'Error' (default) | 'Warning' | 'None'

Level of diagnostic action when the truth table is underspecified, specified as 'Error', 'Warning',
or 'None'. For more information, see “Correct Overspecified and Underspecified Truth Tables”.

Debug — Debugger properties
Stateflow.FunctionDebug object

Debugger properties for the truth table, specified as a Stateflow.FunctionDebug object with this
property:

• Breakpoints.OnDuring — Whether to set the During Function Call breakpoint, specified
as a numeric or logical 1 (true) or 0 (false).

This property applies only when both the Language property of the truth table and the
ActionLanguage of the chart that contains the truth table are 'C'. For more information, see “Set
Breakpoints to Debug Charts”.
Example: function.Debug.Breakpoints.OnDuring = true;

Integer and Fixed-Point Data

SaturateOnIntegerOverflow — Whether data saturates on integer overflow
true or 1 (default) | false or 0

 Stateflow.TruthTable

2-185



Whether the data in the truth table saturates on integer overflow, specified as a numeric or logical 1
(true) or 0 (false). When this property is disabled, the data in the truth table wraps on integer
overflow. This property applies only when the Language property of the truth table is 'MATLAB' and
the ActionLanguage of the chart that contains the truth table is 'C'. For more information, see
“Handle Integer Overflow for Chart Data”.

EmlDefaultFimath — Default fimath properties
'Same as MATLAB Default' (default) | 'Other:UserSpecified'

Default fimath properties for the truth table, specified as one of these values:

• 'Same as MATLAB Default' — Use the same fimath properties as the current default fimath
object.

• 'Other:UserSpecified' — Use the InputFimath property to specify the default fimath
object.

This property applies only when the Language property of the truth table is 'MATLAB' and the
ActionLanguage of the chart that contains the truth table is 'C'.

InputFimath — Default fimath object
character vector

Default fimath object, specified as a character vector. When the EmlDefaultFimath property for
the MATLAB function is 'Other:UserSpecified', you can use this property to:

• Enter an expression that constructs a fimath object.
• Enter the variable name for a fimath object in the MATLAB or model workspace.

This property applies only when the Language property of the truth table is 'MATLAB' and the
ActionLanguage of the chart that contains the truth table is 'C'.

Code Generation

InlineOption — Appearance in generated code
'Auto' (default) | 'Function' | 'Inline'

Appearance of the truth table in generated code, specified as one of these values:

• 'Auto' — An internal calculation determines the appearance of the function in generated code.
• 'Function' — The function is implemented as a separate C function.
• 'Inline' — Calls to the function are replaced by code.

For more information, see “Inline State Functions in Generated Code” (Simulink Coder).

Hierarchy

Chart — Chart that contains truth table
Stateflow.Chart object

This property is read-only.

Chart that contains the truth table, specified as a Stateflow.Chart object.

2 API Object Reference

2-186



Subviewer — Subviewer for truth table
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object

This property is read-only.

Subviewer for the truth table, specified as a Stateflow.Chart, Stateflow.State,
Stateflow.Box, or Stateflow.Function object. The subviewer is the chart or subchart where
you can graphically view the truth table.

Machine — Machine that contains truth table
Stateflow.Machine object

This property is read-only.

Machine that contains the truth table, specified as a Stateflow.Machine object.

Path — Location of parent in model hierarchy
character vector

This property is read-only.

Location of the parent of the truth table in the model hierarchy, specified as a character vector.

Identification

Description — Description
'' (default) | character vector

Description for the truth table, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the truth table, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the truth table, specified as data of any type.

SSIdNumber — Session-independent identifier
scalar

This property is read-only.

Session-independent identifier, specified as an integer scalar. Use this property to distinguish the
truth table from other objects in the model.

Id — Unique identifier
scalar

This property is read-only.

 Stateflow.TruthTable

2-187



Unique identifier, specified as an integer scalar. Unlike SSIdNumber, the value of this property is
reassigned every time you start a new MATLAB session and may be recycled after an object is
deleted.

Object Functions
find Identify specified objects in hierarchy
getChildren Identify children of object
getParent Identify parent of object
dialog Open properties dialog box
isCommented Determine if graphical object is commented out
view Display object in editing environment
highlight Highlight graphical object
fitToView Zoom in on graphical object

Examples

Add Truth Table Function to Chart

Add a truth table function in the chart ch. Set its label to '[y1,y2] = f(x1,x2,x3)'.

function = Stateflow.TruthTable(ch);
function.LabelString = '[y1,y2] = f(x1,x2,x3)';

See Also
Stateflow.Box | Stateflow.Chart | Stateflow.Function | Stateflow.State

Topics
“Overview of the Stateflow API” on page 1-2
“Use Truth Tables to Model Combinatorial Logic”
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

2 API Object Reference

2-188



Stateflow.TruthTableChart
Tabular representation of state machine for decision logic

Description
Use Stateflow.TruthTableChart objects to create truth table blocks that implement
combinatorial logic design in a concise, tabular format. Typical applications include decision making
for:

• Fault detection and management
• Mode switching

Truth table blocks execute as Simulink blocks and provide a more direct implementation of decision
logic than using truth table functions in Stateflow charts. For more information, see “Use Truth
Tables to Model Combinatorial Logic”.

Creation
To create a Stateflow.TruthTableChart object, call the function sfnew with the -TT argument.
For example, to create a Truth Table block in a new Simulink model called myModel, enter:

sfnew -TT myModel

Alternatively, you can add a new Truth Table block to an existing model by using the function
add_block:

add_block('sflib/Truth Table','myModel/Truth Table')

Then, to access the Stateflow.TruthTableChart object, call the find function for the
Simulink.Root object:

rt = sfroot;
table = find(rt,'-isa','Stateflow.TruthTableChart', ...
    'Path','myModel/Truth Table');

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Content

Name — Name of truth table
'Truth Table' (default) | character vector

Name of the truth table, specified as a character vector.

 Stateflow.TruthTableChart

2-189



ActionTable — Action table
cell array of character vectors

Action table for the truth table, specified as a cell array of character vectors.

ConditionTable — Condition table
cell array of character vectors

Condition table for the truth table, specified as a cell array of character vectors.

SupportVariableSizing — Whether truth table supports variable-size data
true or 1 (default) | false or 0

Whether the truth table supports variable-size data, specified as a numeric or logical 1 (true) or 0
(false). Only variable-size data can change dimension during simulation. For more information, see
“Declare Variable-Size Data in Stateflow Charts”.

Discrete and Continuous-Time Semantics

ChartUpdate — Activation method for truth table
'INHERITED' (default) | 'CONTINUOUS' | 'DISCRETE'

Activation method for the truth table, specified as 'CONTINUOUS', 'DISCRETE', or 'INHERITED'.
For more information, see “Update Method”.

SampleTime — Sample time for activating truth table
'-1' (default) | character vector

Sample time for activating the truth table, specified as a character vector. This property applies only
when the ChartUpdate property for the truth table is 'DISCRETE'.

Integer and Fixed-Point Data

SaturateOnIntegerOverflow — Whether data saturates on integer overflow
true or 1 (default) | false or 0

Whether the data in the truth table saturates on integer overflow, specified as a numeric or logical 1
(true) or 0 (false). When this property is disabled, the data in the truth table wraps on integer
overflow. For more information, see “Handle Integer Overflow for Chart Data”.

TreatAsFi — Inherited Simulink signals to treat as fi objects
'Fixed-point' (default) | 'Fixed-point & Integer'

Inherited Simulink signals to treat as Fixed-Point Designer fi objects, specified as one of these
values:

• 'Fixed-point' — The truth table treats all fixed-point inputs as fi objects.
• 'Fixed-point & Integer' — The truth table treats all fixed-point and integer inputs as fi

objects.

EmlDefaultFimath — Default fimath properties
'Same as MATLAB Default' (default) | 'Other:UserSpecified'

Default fimath properties for the truth table, specified as one of these values:

2 API Object Reference

2-190



• 'Same as MATLAB Default' — Use the same fimath properties as the current default fimath
object.

• 'Other:UserSpecified' — Use the InputFimath property to specify the default fimath
object.

InputFimath — Default fimath object
character vector

Default fimath object, specified as a character vector. When the EmlDefaultFimath property for
the truth table is 'Other:UserSpecified', you can use this property to:

• Enter an expression that constructs a fimath object.
• Enter the variable name for a fimath object in the MATLAB or model workspace.

Debugging

OverSpecDiagnostic — Level of diagnostic when truth table is overspecified
'Error' (default) | 'Warning' | 'None'

Level of diagnostic action when the truth table is overspecified, specified as 'Error', 'Warning', or
'None'. For more information, see “Correct Overspecified and Underspecified Truth Tables”.

UnderSpecDiagnostic — Level of diagnostic when truth table is underspecified
'Error' (default) | 'Warning' | 'None'

Level of diagnostic action when the truth table is underspecified, specified as 'Error', 'Warning',
or 'None'. For more information, see “Correct Overspecified and Underspecified Truth Tables”.

Hierarchy

Machine — Machine that contains truth table
Stateflow.Machine object

This property is read-only.

Machine that contains the truth table, specified as a Stateflow.Machine object.

Path — Location of truth table in model hierarchy
character vector

This property is read-only.

Location of the truth table in the model hierarchy, specified as a character vector.

Dirty — Whether truth table has changed
true or 1 | false or 0

Whether the truth table has changed after being opened or saved, specified as a numeric or logical 1
(true) or 0 (false).

Locked — Whether truth table is locked
false or 0 (default) | true or 1

Whether the truth table is locked, specified as a numeric or logical 1 (true) or 0 (false). Enable this
property to prevent changes in the truth table.

 Stateflow.TruthTableChart

2-191



Iced — Whether truth table is locked
false or 0 (default) | true or 1

This property is read-only.

Whether the truth table is locked, specified as a numeric or logical 1 (true) or 0 (false). This
property is equivalent to the property Locked, but is used internally to prevent changes in the truth
table during simulation.

Identification

Description — Description
'' (default) | character vector

Description for the truth table, specified as a character vector.

Document — Document link
'' (default) | character vector

Document link for the truth table, specified as a character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the truth table, specified as data of any type.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Use this property to distinguish the truth table from
other objects in the model. The value of this property is reassigned every time you start a new
MATLAB session and may be recycled after an object is deleted.

Object Functions
find Identify specified objects in hierarchy
getChildren Identify children of object
dialog Open properties dialog box
view Display object in editing environment

Examples
Create Empty Truth Table

Call the function sfnew with the -TT argument to open a new Simulink model that contains an empty
Truth Table block.

sfnew -TT

Access the Simulink.Root object by calling the sfroot function.

rt = sfroot;

2 API Object Reference

2-192



Access the Stateflow.TruthTableChart object by calling the find function for the
Simulink.Root object.

table = find(rt,'-isa','Stateflow.TruthTableChart');

See Also
Blocks
Truth Table

Functions
sfnew | sfroot | add_block

Topics
“Overview of the Stateflow API” on page 1-2
“Finite State Machine Concepts”
“Use Truth Tables to Model Combinatorial Logic”
“List of Stateflow API Properties” on page 4-2

Introduced before R2006a

 Stateflow.TruthTableChart

2-193



Stateflow.Unit
Unit of measurement for input and output data

Description
Use a Stateflow.Unit object to specify the unit of measurement for an input or output data object.
For more information, see “Specify Units for Stateflow Data”.

Creation
Each data object and message has its own Stateflow.Unit object. However, the object only applies
for Stateflow.Data objects when the Scope property is set to 'Input' or 'Output'. To access
the Stateflow.Unit object, use the Props.Unit property for the Stateflow.Data object.

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” on page 1-11.

Name — Name of unit of measurement
'inherit' (default) | character vector

Name of unit of measurement, specified as a character vector. This property applies only to input and
output data.

Examples

Specify Units for Data

Access the Stateflow.Props and Stateflow.Unit objects for the Stateflow.Data object x.

properties = x.Props;
unit = properties.Unit;

Specify the units as meters.

unit.Name = "m";

See Also
Stateflow.Data

Topics
“Overview of the Stateflow API” on page 1-2
“List of Stateflow API Properties” on page 4-2

2 API Object Reference

2-194



“Specify Units for Stateflow Data”

Introduced before R2006a

 Stateflow.Unit

2-195





API Object Function Reference

3



copy
Package: Stateflow

Copy array of objects to clipboard

Syntax
copy(clipboard,objArray)

Description
copy(clipboard,objArray) copies the objects in the array objArray to the clipboard. To paste
the copied objects, use the pasteTo function.

Examples

Copy and Paste by Grouping

Group state A and copy its contents to chart ch. When you group a state, box, or graphical function,
you can copy and paste all the objects contained in the grouped object, as well as all the relationships
among these objects. This method is the simplest way of copying and pasting objects
programmatically. If a state is not grouped, copying the state does not copy any of its contents.

1 Find the Stateflow.State object named A in chart ch.

sA = find(ch,'-isa','Stateflow.State','Name','A');
2 Group state A and its contents by setting the IsGrouped property for sA to true. Save the

previous setting of this property so you can revert to it later.

prevGrouping = sA.IsGrouped;
sA.IsGrouped = true;

3 Change the name of the state to 'Copy_of_A'. Save the previous name so you can revert to it
later.

3 API Object Function Reference

3-2



prevName = sA.Name;
newName = ['Copy_of_' prevName];
sA.Name = newName;

4 Access the clipboard object.

cb = sfclipboard;
5 Copy the grouped state to the clipboard.

copy(cb,sA);
6 Restore the state properties to their original settings.

sA.IsGrouped = prevGrouping;
sA.Name = prevName;

7 Paste a copy of the objects from the clipboard to the chart.

pasteTo(cb,ch);
8 Adjust the state properties of the new state.

sNew = find(ch,'-isa','Stateflow.State','Name',newName);
sNew.Position = sA.Position + [400 0 0 0];
sNew.IsGrouped = prevGrouping;

Copy and Paste Array of Objects

Copy states A1 and A2, along with the transition between them, to a new state in chart ch. To
preserve transition connections and containment relationships between objects, copy all the
connected objects at once.

 copy

3-3



1 Find the Stateflow.State object named A in chart ch.

sA = find(ch,'-isa','Stateflow.State','Name','A');
2 Add a new state called B. To enable pasting of other objects inside B, convert the new state to a

subchart.

sB = Stateflow.State(ch);
sB.Name = 'B';
sB.Position = sA.Position + [400 0 0 0];
sB.IsSubchart = true;

3 Create an array called objArray that contains the states and transitions in state A. Use the
function setdiff to remove state A from the array of objects to copy.

objArrayS = find(sA,'-isa','Stateflow.State');
objArrayS = setdiff(objArrayS,sA);
objArrayT = find(sA,'-isa','Stateflow.Transition');
objArray = [objArrayS objArrayT];

4 Access the clipboard object.

cb = sfclipboard;
5 Copy the objects in objArray and paste them in subchart B.

copy(cb,objArray);
pasteTo(cb,sB);

6 Revert B to a state.

sB.IsSubchart = false;
sB.IsGrouped = false;

7 Reposition the states and transitions in B.

newStates = find(sB,'-isa','Stateflow.State');
newStates = setdiff(newStates,sB);
newTransitions = find(sB,'-isa','Stateflow.Transition');
newOClocks = get(newTransitions,{'SourceOClock','DestinationOClock'});
for i = 1:numel(newStates)
newStates(i).Position = newStates(i).Position + [25 35 0 0];
end
set(newTransitions,{'SourceOClock','DestinationOClock'},newOClocks);

3 API Object Function Reference

3-4



Input Arguments
clipboard — Clipboard
Stateflow.Clipboard object

Clipboard, specified as a Stateflow.Clipboard object.

objArray — Objects to copy
array of Stateflow objects

Objects to copy, specified as an array of Stateflow API objects. The array must contain only graphical
objects or only nongraphical objects.

Graphical objects include:

• Stateflow.Annotation
• Stateflow.AtomicBox
• Stateflow.AtomicSubchart
• Stateflow.Box
• Stateflow.EMFunction
• Stateflow.Function
• Stateflow.Junction
• Stateflow.SimulinkBasedState
• Stateflow.SLFunction
• Stateflow.State
• Stateflow.Transition
• Stateflow.TruthTable

Nongraphical objects include:

• Stateflow.Data
• Stateflow.Event
• Stateflow.Message

 copy

3-5



Copying graphical objects also copies the Stateflow.Data, Stateflow.Event, and
Stateflow.Message objects that the graphical objects contain. When you copy multiple graphical
objects, the value of their Subviewer property must be the same.

Tips
To maintain the transition connections and containment relationships between copied objects, you
must:

• Copy a grouped object to the clipboard. When you group a state, box, or graphical function, you
can copy and paste all the objects contained in the grouped object, as well as all the relationships
among these objects. For more information, see “Copy and Paste by Grouping” on page 3-2.

• Copy all the related objects. For example, to copy two states connected by a transition to another
container, create an array that contains both the states and the transition. Then you can copy the
array to the clipboard. For more information, see “Copy and Paste Array of Objects” on page 3-3.

See Also
Functions
find | pasteTo | setdiff | sfclipboard

Objects
Stateflow.State | Stateflow.Clipboard

Topics
“Overview of the Stateflow API” on page 1-2

Introduced before R2006a

3 API Object Function Reference

3-6



defaultTransitions
Package: Stateflow

Identify default transitions in specified object

Syntax
transitions = defaultTransitions(parent)

Description
transitions = defaultTransitions(parent) returns an array of Stateflow.Transition
objects that correspond to the default transitions at the top level of the specified parent object. For
more information, see “Default Transitions”.

Examples

Identify Default Transitions

Suppose that ch is the Stateflow.Chart object that corresponds to this chart.

Identify the default transition at the top level of the chart. Display the name of the destination.

tr1 = defaultTransitions(ch);
tr1.Destination.Name

ans =

    'A'

Save the Stateflow.State object that corresponds to state A.

state = tr1.Destination;

Identify the default transition at the top level of the state A. Display the name of the destination.

 defaultTransitions

3-7



tr2 = defaultTransitions(state);
tr2.Destination.Name

ans =

    'A1'

Input Arguments
parent — Parent object
Stateflow.Chart object | Stateflow.Function object | Stateflow.State object

Parent object, specified as a Stateflow API object of one of these types:

• Stateflow.Chart
• Stateflow.Function
• Stateflow.State

Tips
• To identify default transitions inside a Stateflow.Box, call the defaultTransitions function

on the Stateflow.Chart, Stateflow.Function, or Stateflow.State object that contains
the box.

See Also
Functions
find | getChildren | innerTransitions | outerTransitions | sinkedTransitions |
sourcedTransitions

Objects
Stateflow.Box | Stateflow.Chart | Stateflow.Function | Stateflow.State |
Stateflow.Transition

Topics
“Overview of the Stateflow API” on page 1-2
“Access Objects in Your Stateflow Chart” on page 1-6
“Default Transitions”
“Group and Execute Transitions”

Introduced before R2006a

3 API Object Function Reference

3-8



dialog
Package: Stateflow

Open properties dialog box

Syntax
dialog(object)

Description
dialog(object) opens the properties dialog box of an object.

Examples

Open Chart Properties Dialog Box

Open a Simulink model called myModel. Suppose that the model contains a Stateflow chart named My
Chart.

open_system('myModel')

Access the Simulink.Root object at the top level of the Stateflow hierarchy.

rt = sfroot;

Find the chart named My Chart.

ch = find(rt,'-isa','Stateflow.Chart','Name','My Chart');

Open the properties dialog box for the chart.

dialog(ch);

Input Arguments
object — Object to inspect
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object | ...

Object to inspect, specified as a Stateflow API object of one of these types:

• Stateflow.Annotation
• Stateflow.AtomicBox
• Stateflow.AtomicSubchart
• Stateflow.Box
• Stateflow.Chart

 dialog

3-9



• Stateflow.Data
• Stateflow.EMChart
• Stateflow.EMFunction
• Stateflow.Event
• Stateflow.Function
• Stateflow.Junction
• Stateflow.Machine
• Stateflow.Message
• Stateflow.Port
• Stateflow.SimulinkBasedState
• Stateflow.SLFunction
• Stateflow.State
• Stateflow.StateTransitionTableChart
• Stateflow.Transition
• Stateflow.TruthTable
• Stateflow.TruthTableChart

See Also
view | highlight | fitToView

Topics
“Overview of the Stateflow API” on page 1-2

Introduced before R2006a

3 API Object Function Reference

3-10



find
Package: Stateflow

Identify specified objects in hierarchy

Syntax
objArray = find(location,Name,Value)
objArray = find(location,'-not',Name,Value)
objArray = find(location,'-regexp',Name,Value)
objArray = find(location, ___ ,logicalOp, ___ )

Description
objArray = find(location,Name,Value) returns an array of objects in the hierarchy of
location that match the criteria specified by one or more Name,Value pair arguments.

objArray = find(location,'-not',Name,Value) returns objects that do not match the
criteria specified by the subsequent Name,Value pair argument.

objArray = find(location,'-regexp',Name,Value) indicates that the subsequent
Name,Value pair argument contains a regular expression. For more information, see “Regular
Expressions”.

objArray = find(location, ___ ,logicalOp, ___ ) combines search criteria by using one of
these logical operations:

• '-and' — Results must match both search criteria.
• '-or' — Results must match at least one criterion.
• '-xor' — Results must match exactly one criterion.

When using various logical operators, -and has the highest precedence, while -or and -xor are
right-associative. If no logical operator is specified, then -and is assumed.

Examples

Find States in a Chart

Find all states in the chart ch.

states = find(ch,'-isa','Stateflow.State')

Find States Named A

Find all states in the chart ch whose Name property is 'A'.

 find

3-11



statesNamedA = find(ch,'-isa','Stateflow.State','-and','Name','A')

Find Objects with Name Starting with A

Find all objects in the chart ch whose Name property starts with the letter A.

startsWithA = find(ch,'-regexp','Name','^A')

Find Nongraphical Objects

Find all objects in the chart ch that do not have an object function called fitToView.

nongraphical = find(ch,'-not','-method','fitToView')

Use Function to Specify Search Criteria

Find all charts in a Simulink model called myModel.

f = @(h) (strcmp(h.Machine.Name,'myModel'));                   % define function handle
ch = find(rt,'-isa','Stateflow.Chart','-and','-function',f);   % find charts for which f returns 'true'

Input Arguments
location — Location to search
Simulink.Root object | Stateflow.Chart object | Stateflow.State object | ...

Location to search, specified as a Stateflow API object of one of these types:

• Simulink.Root
• Stateflow.Box
• Stateflow.Chart
• Stateflow.EMChart
• Stateflow.EMFunction
• Stateflow.Function
• Stateflow.Machine
• Stateflow.State
• Stateflow.SLFunction
• Stateflow.StateTransitionTableChart
• Stateflow.TruthTable
• Stateflow.TruthTableChart

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN. In addition to the

3 API Object Function Reference

3-12



Name,Value arguments listed here, you can use the name of a Stateflow API property and its
corresponding value. For more information, see “List of Stateflow API Properties” on page 4-2.
Example: find(ch,'Name','A') finds all objects in the chart ch whose Name property is 'A'.

-isa — Type of object
character vector

Type of object for which to search, specified as the comma-separated pair consisting of '-isa' and a
character vector or a class handle for an object.
Example: find(ch,'-isa','Stateflow.State') finds all states in the chart ch.
Example: find(ch,'-isa',class(object)) finds all objects of the same type as object.

-depth — Depth of search
inf (default) | scalar nonnegative integer

Depth of search in the object hierarchy, specified as the comma-separated pair consisting of '-
depth' and a scalar nonnegative integer or inf.
Example: find(ch,'-depth',2) finds all objects in the top two levels of the hierarchy of the chart
ch.

-function — Filtering function
function handle

Filtering function, specified as the comma-separated pair consisting of '-function' and a function
handle. The function evaluates each object visited in the search and returns a logical scalar value that
indicates whether the object is a match.
Example: find(ch,'-function',f) finds all objects for which f is true.

-method — Object function
character vector

Object function that belongs to the objects for which to search, specified as the comma-separated
pair consisting of '-method' and a character vector.
Example: find(ch,'-method','dialog') finds all objects in the chart ch that have an object
function called dialog.

-property — Property
character vector

Property that belongs to the objects for which to search, specified as the comma-separated pair
consisting of '-property' and a character vector.
Example: find(ch,'-property','HasOutputData') finds all objects in the chart ch that have a
property called HasOutputData.

Output Arguments
objArray — Search results
array

Search results, returned as an array of Stateflow API objects.

 find

3-13



Tips
• Using the find function on Simulink.Root or Stateflow.Machine objects can return

Simulink objects that match the search criteria you specify. For example, this command can return
a Simulink subsystem or block named ABC:

find(rt,'Name','ABC')
• Opening a main model that refers to a linked Stateflow chart does not guarantee that the
Stateflow API can find the linked chart. To access the objects in a linked library chart, first load
the library model into the Simulink workspace by performing one of these tasks:

• Open the library model.
• View a linked subsystem or block in the main model.
• Compile or simulate the model.

See Also
getChildren | getParent | strcmp

Topics
“Access Objects in Your Stateflow Chart” on page 1-6
“List of Stateflow API Properties” on page 4-2
“Regular Expressions”

Introduced before R2006a

3 API Object Function Reference

3-14



fitToView
Package: Stateflow

Zoom in on graphical object

Syntax
fitToView(graphicalObject)

Description
fitToView(graphicalObject) zooms in on a graphical object in the Stateflow Editor.

Examples

Zoom in on State in Chart

Open a Simulink model called myModel. Suppose that the model contains a Stateflow chart with a
state named A.

open_system('myModel')

Access the Simulink.Root object at the top level of the Stateflow hierarchy.

rt = sfroot;

Find the state named A.

st = find(rt,'-isa','Stateflow.State','Name','A');

Zoom in on the state in the Stateflow Editor.

fitToView(st);

Input Arguments
graphicalObject — Graphical object
Stateflow.State object | Stateflow.Box object | Stateflow.Function object | ...

Graphical object, specified as a Stateflow API object of one of these types:

• Stateflow.Annotation
• Stateflow.AtomicBox
• Stateflow.AtomicSubchart
• Stateflow.Box
• Stateflow.Chart
• Stateflow.EMFunction

 fitToView

3-15



• Stateflow.Function
• Stateflow.Junction
• Stateflow.Port
• Stateflow.SimulinkBasedState
• Stateflow.SLFunction
• Stateflow.State
• Stateflow.Transition
• Stateflow.TruthTable

See Also
view | highlight | zoomIn | zoomOut

Topics
“Overview of the Stateflow API” on page 1-2

Introduced in R2008a

3 API Object Function Reference

3-16



getChildren
Package: Stateflow

Identify children of object

Syntax
objArray = getChildren(parent)

Description
objArray = getChildren(parent) returns an array of objects that have the specified parent.

Examples

Identify Children of Chart

Suppose that ch is the Stateflow.Chart object that corresponds to this chart. This chart has two
children, state A and a default transition. State A has four children, state A1, state A2, and two
transitions.

Identify the children of the chart ch. Display the object types of the children.

children = getChildren(ch);
arrayfun(@class,children,UniformOutput=false)

ans =

  2×1 cell array

    {'Stateflow.State'     }
    {'Stateflow.Transition'}

The first element in children is a state. Display the name of the state.

 getChildren

3-17



state = children(1);
state.Name

ans =

    'A'

Identify the children of state A. Display the object types of the children.

grandchildren = getChildren(state);
arrayfun(@class,grandchildren,UniformOutput=false)

ans =

  4×1 cell array

    {'Stateflow.State'     }
    {'Stateflow.State'     }
    {'Stateflow.Transition'}
    {'Stateflow.Transition'}

The first two elements in grandchildren are states. Display the names of the states.

grandchildren(1).Name

ans =

    'A1'

grandchildren(2).Name

ans =

    'A2'

Input Arguments
parent — Parent object
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object | ...

Parent object, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.EMChart
• Stateflow.EMFunction
• Stateflow.Function
• Stateflow.SimulinkBasedState
• Stateflow.State
• Stateflow.SLFunction
• Stateflow.StateTransitionTableChart
• Stateflow.TruthTable

3 API Object Function Reference

3-18



• Stateflow.TruthTableChart

See Also
Functions
find | getParent | arrayfun | class

Objects
Stateflow.State | Stateflow.Box | Stateflow.Function

Topics
“Overview of the Stateflow API” on page 1-2
“Access Objects in Your Stateflow Chart” on page 1-6

Introduced before R2006a

 getChildren

3-19



getParent
Package: Stateflow

Identify parent of object

Syntax
parent = getParent(object)

Description
parent = getParent(object) returns the parent of an object in a Stateflow chart, State
Transition Table, Truth Table, or MATLAB Function block.

Examples

Identify Parent of State

Suppose that ch is the Stateflow.Chart object that corresponds to this chart. In this chart, the
parent of state A1 is state A. The parent of state A is the chart.

Find the Stateflow.State object named A1.

sA1 = find(ch,'-isa','Stateflow.State','Name','A1');

Identify the parent of state A1. Display the name of the parent.

parent = getParent(sA1);
parent.Name

ans =

    'A'

Identify the parent of state A. Display the name of the parent.

3 API Object Function Reference

3-20



grandparent = getParent(parent);
grandparent.Name

ans =

    'Chart'

Input Arguments
object — Object
Stateflow.State object | Stateflow.Box object | Stateflow.Function object | ...

Object in a Stateflow chart, State Transition Table, Truth Table, or MATLAB Function block, specified
as a Stateflow API object of one of these types:

• Stateflow.Annotation
• Stateflow.AtomicBox
• Stateflow.AtomicSubchart
• Stateflow.Box
• Stateflow.Data
• Stateflow.EMFunction
• Stateflow.Event
• Stateflow.Function
• Stateflow.Junction
• Stateflow.Message
• Stateflow.Port
• Stateflow.SimulinkBasedState
• Stateflow.SLFunction
• Stateflow.State
• Stateflow.Transition
• Stateflow.TruthTable

See Also
Functions
find | getChildren

Objects
Stateflow.State | Stateflow.Box | Stateflow.Function

Topics
“Overview of the Stateflow API” on page 1-2
“Access Objects in Your Stateflow Chart” on page 1-6

Introduced before R2006a

 getParent

3-21



highlight
Package: Stateflow

Highlight graphical object

Syntax
highlight(graphicalObject)

Description
highlight(graphicalObject) highlights a graphical object in the Stateflow Editor.

Examples

Highlight State in Chart

Open a Simulink model called myModel. Suppose that the model contains a Stateflow chart with a
state named A.

open_system('myModel')

Access the Simulink.Root object at the top level of the Stateflow hierarchy.

rt = sfroot;

Find the state named A.

st = find(rt,'-isa','Stateflow.State','Name','A');

Highlight the state in the Stateflow Editor.

highlight(st);

Input Arguments
graphicalObject — Graphical object
Stateflow.State object | Stateflow.Box object | Stateflow.Function object | ...

Graphical object, specified as a Stateflow API object of one of these types:

• Stateflow.AtomicBox
• Stateflow.AtomicSubchart
• Stateflow.Box
• Stateflow.EMFunction
• Stateflow.Function
• Stateflow.Junction

3 API Object Function Reference

3-22



• Stateflow.Port
• Stateflow.SimulinkBasedState
• Stateflow.SLFunction
• Stateflow.State
• Stateflow.Transition
• Stateflow.TruthTable

Tips
To clear the highlighting, use the hilite_system function. For example, to clear the highlighting in
chart ch, enter:

hilite_system(ch.Path,'none')

Alternatively, you can use the Stateflow Editor. In the Debug tab, under Animation, click the

Remove animation highlighting button .

See Also
view | fitToView | hilite_system | zoomIn | zoomOut

Topics
“Overview of the Stateflow API” on page 1-2

Introduced in R2012a

 highlight

3-23



innerTransitions
Package: Stateflow

Identify inner transitions with specified source

Syntax
transitions = innerTransitions(source)

Description
transitions = innerTransitions(source) returns an array of Stateflow.Transition
objects that correspond to the inner transitions of the specified source state. An inner transition is a
transition that does not exit the source state. For more information, see “Inner Transitions”.

Examples

Identify Inner Transitions

Suppose that ch is the Stateflow.Chart object that corresponds to this chart.

Find the Stateflow.State object named A.

sA = find(ch,'-isa','Stateflow.State','Name','A');

Identify the transition whose source is state A and whose destination is inside state A. Display the
name of the destination.

tr = innerTransitions(sA);
tr.Destination.Name

ans =

    'B'

Input Arguments
source — Source state
Stateflow.State object

3 API Object Function Reference

3-24



Source state, specified as a Stateflow.State object.

See Also
Functions
find | defaultTransitions | outerTransitions | sinkedTransitions |
sourcedTransitions

Objects
Stateflow.State | Stateflow.Transition

Topics
“Overview of the Stateflow API” on page 1-2
“Access Objects in Your Stateflow Chart” on page 1-6
“Inner Transitions”
“Group and Execute Transitions”

Introduced before R2006a

 innerTransitions

3-25



isCommented
Package: Stateflow

Determine if graphical object is commented out

Syntax
tf = isCommented(graphicalObject)

Description
tf = isCommented(graphicalObject) returns a logical value that indicates if a graphical object
is commented out. The function returns logical 1 (true) if:

• The graphical object is explicitly commented out. To explicitly comment out an object, set its
IsExplicitlyCommented property to true. Alternatively, you can right-click the graphical
object and select Comment Out.

• The graphical object is implicitly commented out. In this case, its IsImplicitlyCommented
property has a value of true. An object is implicitly commented out when you explicitly comment
out a state, box, or function that contains the object. Additionally,

• Transitions are implicitly commented out when you comment out their source or destination.
• Entry and exit ports are implicitly commented out when you comment out their matching entry

or exit junction.

Otherwise, the function returns logical 0 (false).

Examples

Comment Out State

When you explicitly comment out a state, box, or function, you implicitly comment out all the
graphical objects that it contains. For example, when you comment out state A in this chart, you also
comment out its substates, A1 and A2.

3 API Object Function Reference

3-26



Find the Stateflow.State objects named A, A1, and A2.

sA = find(ch,'-isa','Stateflow.State','Name','A');
sA1 = find(ch,'-isa','Stateflow.State','Name','A1');
sA2 = find(ch,'-isa','Stateflow.State','Name','A2');

Check that state A and its substates are not commented out.

[isCommented(sA),isCommented(sA1),isCommented(sA2)]

ans =

  1×3 logical array

   0   0   0

Explicitly comment out state A.

sA.IsExplicitlyCommented = true;

Check that state A and its substates are commented out.

[isCommented(sA),isCommented(sA1),isCommented(sA2)]

ans =

  1×3 logical array

   1   1   1

Input Arguments
graphicalObject — Graphical object
Stateflow.State object | Stateflow.Box object | Stateflow.Function object | ...

Graphical object, specified as a Stateflow API object of one of these types:

• Stateflow.AtomicBox
• Stateflow.AtomicSubchart
• Stateflow.Box
• Stateflow.EMFunction
• Stateflow.Function
• Stateflow.Junction
• Stateflow.Port
• Stateflow.SimulinkBasedState
• Stateflow.SLFunction
• Stateflow.State
• Stateflow.Transition
• Stateflow.TruthTable

 isCommented

3-27



See Also
Functions
find

Objects
Stateflow.State | Stateflow.Box | Stateflow.Function

Topics
“Overview of the Stateflow API” on page 1-2
“Commenting Stateflow Objects in a Chart”
“List of Stateflow API Properties” on page 4-2

Introduced in R2016a

3 API Object Function Reference

3-28



outerTransitions
Package: Stateflow

Identify outer transitions with specified source

Syntax
transitions = outerTransitions(source)

Description
transitions = outerTransitions(source) returns an array of Stateflow.Transition
objects that correspond to the outer transitions of the specified source state. An inner transition is a
transition that does not exit the source state.

Examples

Identify Outer Transitions

Suppose that ch is the Stateflow.Chart object that corresponds to this chart.

Find the Stateflow.State object named A.

sA = find(ch,'-isa','Stateflow.State','Name','A');

Identify the transition whose source is state A and whose destination is outside of state A. Display the
name of the destination.

tr = outerTransitions(sA);
tr.Destination.Name

ans =

    'C'

Input Arguments
source — Source state
Stateflow.State object

 outerTransitions

3-29



Source state, specified as a Stateflow.State object.

See Also
Functions
find | defaultTransitions | innerTransitions | sinkedTransitions |
sourcedTransitions

Objects
Stateflow.State | Stateflow.Transition

Topics
“Overview of the Stateflow API” on page 1-2
“Access Objects in Your Stateflow Chart” on page 1-6
“Group and Execute Transitions”

Introduced before R2006a

3 API Object Function Reference

3-30



pasteTo
Package: Stateflow

Paste objects in clipboard to specified container object

Syntax
pasteTo(clipboard,parent)

Description
pasteTo(clipboard,parent) pastes the contents of the clipboard to the specified parent. To copy
objects to the clipboard, use the copy function.

Examples

Copy and Paste by Grouping

Group state A and copy its contents to chart ch. When you group a state, box, or graphical function,
you can copy and paste all the objects contained in the grouped object, as well as all the relationships
among these objects. This method is the simplest way of copying and pasting objects
programmatically. If a state is not grouped, copying the state does not copy any of its contents.

1 Find the Stateflow.State object named A in chart ch.

sA = find(ch,'-isa','Stateflow.State','Name','A');
2 Group state A and its contents by setting the IsGrouped property for sA to true. Save the

previous setting of this property so you can revert to it later.

prevGrouping = sA.IsGrouped;
sA.IsGrouped = true;

3 Change the name of the state to 'Copy_of_A'. Save the previous name so you can revert to it
later.

 pasteTo

3-31



prevName = sA.Name;
newName = ['Copy_of_' prevName];
sA.Name = newName;

4 Access the clipboard object.

cb = sfclipboard;
5 Copy the grouped state to the clipboard.

copy(cb,sA);
6 Restore the state properties to their original settings.

sA.IsGrouped = prevGrouping;
sA.Name = prevName;

7 Paste a copy of the objects from the clipboard to the chart.

pasteTo(cb,ch);
8 Adjust the state properties of the new state.

sNew = find(ch,'-isa','Stateflow.State','Name',newName);
sNew.Position = sA.Position + [400 0 0 0];
sNew.IsGrouped = prevGrouping;

Copy and Paste Array of Objects

Copy states A1 and A2, along with the transition between them, to a new state in chart ch. To
preserve transition connections and containment relationships between objects, copy all the
connected objects at once.

3 API Object Function Reference

3-32



1 Find the Stateflow.State object named A in chart ch.

sA = find(ch,'-isa','Stateflow.State','Name','A');
2 Add a new state called B. To enable pasting of other objects inside B, convert the new state to a

subchart.

sB = Stateflow.State(ch);
sB.Name = 'B';
sB.Position = sA.Position + [400 0 0 0];
sB.IsSubchart = true;

3 Create an array called objArray that contains the states and transitions in state A. Use the
function setdiff to remove state A from the array of objects to copy.

objArrayS = find(sA,'-isa','Stateflow.State');
objArrayS = setdiff(objArrayS,sA);
objArrayT = find(sA,'-isa','Stateflow.Transition');
objArray = [objArrayS objArrayT];

4 Access the clipboard object.

cb = sfclipboard;
5 Copy the objects in objArray and paste them in subchart B.

copy(cb,objArray);
pasteTo(cb,sB);

6 Revert B to a state.

sB.IsSubchart = false;
sB.IsGrouped = false;

7 Reposition the states and transitions in B.

newStates = find(sB,'-isa','Stateflow.State');
newStates = setdiff(newStates,sB);
newTransitions = find(sB,'-isa','Stateflow.Transition');
newOClocks = get(newTransitions,{'SourceOClock','DestinationOClock'});
for i = 1:numel(newStates)
newStates(i).Position = newStates(i).Position + [25 35 0 0];
end
set(newTransitions,{'SourceOClock','DestinationOClock'},newOClocks);

 pasteTo

3-33



Input Arguments
clipboard — Clipboard
Stateflow.Clipboard object

Clipboard, specified as a Stateflow.Clipboard object.

parent — Parent for copied objects
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object | ...

Parent for the copied objects, specified as a Stateflow API object of one of these types:

• Stateflow.Box
• Stateflow.Chart
• Stateflow.EMFunction
• Stateflow.Function
• Stateflow.SimulinkBasedState
• Stateflow.SLFunction
• Stateflow.State
• Stateflow.TruthTable

If the objects in the clipboard are all graphical (states, boxes, functions, annotations, transitions, or
junctions), this object must be a chart or subchart.

Tips
When you paste graphical objects, the new parent must be a chart or a subchart. To convert a state,
box, or graphical function to a subchart, set its IsSubchart property to true. After pasting, you can
revert the parent by setting its IsSubchart and IsGrouped properties to false.

See Also
Functions
copy | find | setdiff | sfclipboard

3 API Object Function Reference

3-34



Objects
Stateflow.State | Stateflow.Clipboard

Topics
“Overview of the Stateflow API” on page 1-2

Introduced before R2006a

 pasteTo

3-35



setImage
Package: Stateflow

Insert image into annotation

Syntax
setImage(annotation,source)

Description
setImage(annotation,source) inserts an image from the clipboard or an image file into an
annotation.

Examples

Add Image Annotation to Chart

Add an annotation in the chart ch. Use the file myImageFile.png, which is located in the folder
myfolder/annotation_images, as the image for the annotation.

annotation = Stateflow.Annotation(ch);
setImage(annotation, ...
    fullfile('myfolder','annotation_images','myImageFile.png');

Input Arguments
annotation — Annotation
Stateflow.Annotation object

Annotation, specified as a Stateflow.Annotation object.

source — Source of image
character array | 'clipboard' | ''

Source of the image, specified as a character array that contains the full path and name of an image
file. Alternatively, to insert an image from the clipboard, specify 'clipboard'.

To convert an image annotation to a text annotation, specify ''.

See Also
Functions
fullfile

Objects
Stateflow.Annotation

3 API Object Function Reference

3-36



Topics
“Overview of the Stateflow API” on page 1-2

Introduced in R2014a

 setImage

3-37



sinkedTransitions
Package: Stateflow

Identify transitions with specified destination

Syntax
transitions = sinkedTransitions(destination)

Description
transitions = sinkedTransitions(destination) returns an array of
Stateflow.Transition objects with the specified destination.

Examples

Identify Transitions With Specified Destination

Suppose that ch is the Stateflow.Chart object that corresponds to this chart.

Find the Stateflow.State object named A2.

sA2 = find(ch,'-isa','Stateflow.State','Name','A2');

Identify the transition whose destination is state A2. Display the name of the source.

tr = sinkedTransitions(sA2);
tr.Source.Name

3 API Object Function Reference

3-38



ans =

    'A1'

Input Arguments
destination — Destination object
Stateflow.Junction object | Stateflow.Port object | Stateflow.State object

Destination object, specified as a Stateflow API object of one of these types:

• Stateflow.Junction
• Stateflow.Port
• Stateflow.State

See Also
Functions
find | defaultTransitions | innerTransitions | outerTransitions |
sourcedTransitions

Objects
Stateflow.Junction | Stateflow.Port | Stateflow.State | Stateflow.Transition

Topics
“Overview of the Stateflow API” on page 1-2
“Access Objects in Your Stateflow Chart” on page 1-6

Introduced in R2012a

 sinkedTransitions

3-39



sourcedTransitions
Package: Stateflow

Identify transitions with specified source

Syntax
transitions = sourcedTransitions(source)

Description
transitions = sourcedTransitions(source) returns an array of Stateflow.Transition
objects with the specified source.

Examples

Identify Transitions With Specified Source

Suppose that ch is the Stateflow.Chart object that corresponds to this chart.

Find the Stateflow.State object named A1.

sA1 = find(ch,'-isa','Stateflow.State','Name','A1');

Identify the transition whose source is state A1. Display the name of the destination.

tr = sinkedTransitions(sA1);
tr.Destination.Name

3 API Object Function Reference

3-40



ans =

    'A2'

Input Arguments
source — Source object
Stateflow.Junction object | Stateflow.Port object | Stateflow.State object

Source object, specified as a Stateflow API object of one of these types:

• Stateflow.Junction
• Stateflow.Port
• Stateflow.State

See Also
Functions
find | defaultTransitions | innerTransitions | outerTransitions | sinkedTransitions

Objects
Stateflow.Junction | Stateflow.Port | Stateflow.State | Stateflow.Transition

Topics
“Overview of the Stateflow API” on page 1-2
“Access Objects in Your Stateflow Chart” on page 1-6

Introduced before R2006a

 sourcedTransitions

3-41



up
Package: Stateflow

(Not recommended) Identify parent of object

Note Using up is not recommended. Use getParent instead.

Syntax
parent = up(object)

Description
parent = up(object) returns the parent of an object in a Stateflow chart, State Transition Table,
Truth Table, or MATLAB Function block.

Examples

Identify Parent of State

Suppose that ch is the Stateflow.Chart object that corresponds to this chart. In this chart, the
parent of state A1 is state A. The parent of state A is the chart.

Find the Stateflow.State object named A1.

sA1 = find(ch,'-isa','Stateflow.State','Name','A1');

Identify the parent of state A1. Display the name of the parent.

parent = up(sA1);
parent.Name

3 API Object Function Reference

3-42



ans =

    'A'

Identify the parent of state A. Display the name of the parent.

grandparent = up(parent);
grandparent.Name

ans =

    'Chart'

Input Arguments
object — Object
Stateflow.State object | Stateflow.Box object | Stateflow.Function object | ...

Object in a Stateflow chart, State Transition Table, Truth Table, or MATLAB Function block, specified
as a Stateflow API object of one of these types:

• Stateflow.Annotation
• Stateflow.AtomicBox
• Stateflow.AtomicSubchart
• Stateflow.Box
• Stateflow.Data
• Stateflow.EMFunction
• Stateflow.Event
• Stateflow.Function
• Stateflow.Junction
• Stateflow.Message
• Stateflow.SimulinkBasedState
• Stateflow.SLFunction
• Stateflow.State
• Stateflow.Transition
• Stateflow.TruthTable

See Also
Functions
find | getChildren | getParent

Objects
Stateflow.State | Stateflow.Box | Stateflow.Function

Topics
“Overview of the Stateflow API” on page 1-2
“Access Objects in Your Stateflow Chart” on page 1-6

 up

3-43



Introduced before R2006a

3 API Object Function Reference

3-44



view
Package: Stateflow

Display object in editing environment

Syntax
view(object)

Description
view(object) displays an object in its editing environment, such as the Stateflow, MATLAB, and
Simulink Editors.

• The Stateflow Editor displays the contents of these objects:

• Stateflow.AtomicBox
• Stateflow.AtomicSubchart
• Stateflow.Box with IsSubchart set to true
• Stateflow.Chart
• Stateflow.Function with IsSubchart set to true
• Stateflow.State with IsSubchart set to true

• The Stateflow Editor shows these objects in their subviewer:

• Stateflow.Annotation
• Stateflow.Box with IsSubchart set to false
• Stateflow.Function with IsSubchart set to false
• Stateflow.Junction
• Stateflow.Port
• Stateflow.State with IsSubchart set to false
• Stateflow.Transition

• The MATLAB Function Editor displays the code for Stateflow.EMChart and
Stateflow.EMFunction objects.

• The Simulink Editor displays the block diagram for Stateflow.SimulinkBasedState and
Stateflow.SLFunction objects.

• The Truth Table Editor displays the content of Stateflow.TruthTable and
Stateflow.TruthTableChart objects.

• The State Transition Table Editor displays the content of
Stateflow.StateTransitionTableChart objects.

• The Model Explorer displays the properties of these objects:

• Stateflow.Data
• Stateflow.Event

 view

3-45



• Stateflow.Message

Examples

Display State in Chart

Open a Simulink model called myModel. Suppose that the model contains a Stateflow chart with a
state named A.

open_system('myModel')

Access the Simulink.Root object at the top level of the Stateflow hierarchy.

rt = sfroot;

Find the state named A.

st = find(rt,'-isa','Stateflow.State','Name','A');

Display the state in the Stateflow Editor.

view(st);

Input Arguments
object — Object to view
Stateflow.Chart object | Stateflow.State object | Stateflow.Box object |
Stateflow.Function object | ...

Object to view, specified as a Stateflow API object of one of these types:

• Stateflow.Annotation
• Stateflow.AtomicBox
• Stateflow.AtomicSubchart
• Stateflow.Box
• Stateflow.Chart
• Stateflow.Data
• Stateflow.EMChart
• Stateflow.EMFunction
• Stateflow.Event
• Stateflow.Function
• Stateflow.Junction
• Stateflow.Message
• Stateflow.Port
• Stateflow.SimulinkBasedState
• Stateflow.SLFunction
• Stateflow.State

3 API Object Function Reference

3-46



• Stateflow.StateTransitionTableChart
• Stateflow.Transition
• Stateflow.TruthTable
• Stateflow.TruthTableChart

See Also
highlight | fitToView | zoomIn | zoomOut

Topics
“Overview of the Stateflow API” on page 1-2

Introduced before R2006a

 view

3-47



zoomIn
Package: Stateflow

Zoom in on Stateflow chart

Syntax
zoomIn(editor)

Description
zoomIn(editor) increases the magnification level of the Stateflow.Editor object editor for a
chart.

Examples

Zoom in on Stateflow Chart

Increase the magnification level of a nonempty chart ch.

ed = ch.Editor;
zoomIn(ed)

If the magnification level for the chart was initially 100%, this command increases it to 130%.

Input Arguments
editor — Editor for chart
Stateflow.Editor object

Editor for a chart, specified as a Stateflow.Editor object. The Stateflow.Editor object
provides access to the graphical aspects of a chart. For example, to access the Stateflow.Editor
object for a Stateflow.Chart object ch, enter:

ed = ch.Editor;

Algorithms
The zoomIn function modifies the ZoomFactor property of the Stateflow.Editor object. The
property is limited to a minimum of 0.5 and a maximum of 10. zoomIn multiplies ZoomFactor by a
factor of 1.3 as long as the resulting value is in this range. Otherwise, zoomIn sets ZoomFactor to
the maximum value of 10.

See Also
view | highlight | fitToView | zoomOut

Topics
“Overview of the Stateflow API” on page 1-2

3 API Object Function Reference

3-48



Introduced before R2006a

 zoomIn

3-49



zoomOut
Package: Stateflow

Zoom out on Stateflow chart

Syntax
zoomOut(editor)

Description
zoomOut(editor) reduces the magnification level of the Stateflow.Editor object editor for a
chart.

Examples

Zoom out on Stateflow Chart

Decrease the magnification level of a nonempty chart ch.

ed = ch.Editor;
zoomOut(ed)

If the magnification level for the chart was initially 100%, this command decreases it to 76.9%.

Input Arguments
editor — Editor for chart
Stateflow.Editor object

Editor for a chart, specified as a Stateflow.Editor object. The Stateflow.Editor object
provides access to the graphical aspects of a chart. For example, to access the Stateflow.Editor
object for a Stateflow.Chart object ch, enter:

ed = ch.Editor;

Algorithms
The zoomOut function modifies the ZoomFactor property of the Stateflow.Editor object. The
property is limited to a minimum of 0.5 and a maximum of 10. zoomOut divides ZoomFactor by a
factor of 1.3 as long as the resulting value is in this range. Otherwise, zoomOut sets ZoomFactor to
the minimum value of 0.5.

See Also
view | highlight | fitToView | zoomIn

Topics
“Overview of the Stateflow API” on page 1-2

3 API Object Function Reference

3-50



Introduced before R2006a

 zoomOut

3-51





API Property Reference

4



List of Stateflow API Properties
The following reference tables for Stateflow API properties have these columns:

• Property — The name of the property. To access or set a property value, use its name in dot
notation along with a Stateflow object. Properties with multiple levels of hierarchy (such as the
LoggingInfo and Props properties of data objects) must be set individually. For more
information, see “Modify Properties and Call Functions of Stateflow Objects” on page 1-11.

• Access — An access type for the property.

• RW (read/write): You can access or set the value of these properties by using the Stateflow API.
• RO (read-only): These properties are set by the Stateflow software.

• Description — A description of the property.
• Objects — The types of objects that have this property. The object types are listed as: Annotation

(A on page 2-2), Atomic Box (AB on page 2-8), Atomic Subchart (AS on page 2-13), Box (B on page
2-20), Chart (C on page 2-28), Clipboard (CB on page 2-24), Data (D on page 2-38), Event (E on
page 2-78), Editor (ED on page 2-59), Graphical Function (GF on page 2-88), Junction (J on page 2-
97), Machine (M on page 2-104), MATLAB Function (MF on page 2-68), MATLAB Function Block
(MFB on page 2-61), Message (MS on page 2-112), Entry or Exit Port (P on page 2-120), State (S
on page 2-140), Simulink Based State (SBS on page 2-130), Simulink Function (SF on page 2-136),
State Transition Table (STT on page 2-156), Transition (T on page 2-175), Truth Table Block (TTB
on page 2-189), and Truth Table Function (TTF on page 2-183).

Active State Output
Property Access Description Objects
DoNotAutogenerateEnu
m

RW Whether to define the enumerated data type for the
active state data output manually, specified as a
numeric or logical 1 (true) or 0 (false). This
property applies only when the
OutputMonitoringMode property is
'ChildActivity' or 'LeafStateActivity'. For
more information, see “Define State Activity
Enumeration Type”.

C on page 2-
28 S on page
2-140 STT on
page 2-156

EnumTypeName RW Name of the enumerated data type for the active state
data object, specified as a character vector. This
property applies only when the
OutputMonitoringMode property is
'ChildActivity' or 'LeafStateActivity'. For
more information, see “Enum Name”.

C on page 2-
28 S on page
2-140 STT on
page 2-156

HasOutputData RW Whether to create an active state data output port for
the object, specified as a numeric or logical 1 (true)
or 0 (false). For more information, see “Monitor
State Activity Through Active State Data”.

AS on page
2-13 C on
page 2-28
SBS on page
2-130 S on
page 2-140
STT on page
2-156

4 API Property Reference

4-2



Property Access Description Objects
OutputData RO Active state data object, specified as a

Stateflow.Data object. This property applies only
when the HasOutputData property is true.

AS on page
2-13 C on
page 2-28
SBS on page
2-130 S on
page 2-140
STT on page
2-156

OutputMonitoringMode RW Monitoring mode for the active state output data,
specified as 'SelfActivity', 'ChildActivity', or
'LeafStateActivity'.

For charts, the options are 'ChildActivity' or
'LeafStateActivity'.

For atomic subcharts and Simulink based states, the
only option is 'SelfActivity'.

AS on page
2-13 C on
page 2-28
SBS on page
2-130 S on
page 2-140
STT on page
2-156

OutputPortName RW Name of the active state data object, specified as a
character vector. This property applies only when the
HasOutputData property is true.

AS on page
2-13 C on
page 2-28
SBS on page
2-130 S on
page 2-140
STT on page
2-156

OutputState RO State or chart monitored by the data object, specified
as an empty array or a Stateflow.AtomicSubchart,
Stateflow.Chart,
Stateflow.SimulinkBasedState,
Stateflow.State, or
Stateflow.StateTransitionTableChart object.
For more information, see “Monitor State Activity
Through Active State Data”.

D on page 2-
38

C Action Language
Property Access Description Objects
EnableBitOps RW Whether to use bit operations in state and transition

actions, specified as a numeric or logical 1 (true) or 0
(false). This property applies only to charts and state
transition tables that use C as the action language. For
more information, see “Enable C-bit operations”.

C on page 2-
28 STT on
page 2-156

 List of Stateflow API Properties

4-3



Property Access Description Objects
StrongDataTypingWith
Simulink

RW Whether to use strong data typing when the chart or
state transition table interfaces with Simulink input
and output signals, specified as a numeric or logical 1
(true) or 0 (false). This property applies only to
charts and state transition tables that use C as the
action language. For more information, see “Use
strong data typing with Simulink I/O”.

C on page 2-
28 STT on
page 2-156

UserSpecifiedStateTr
ansitionExecutionOrd
er

RW Whether to use explicit ordering of parallel states and
transitions, specified as a numeric or logical 1 (true)
or 0 (false). This property applies only to charts that
use C as the action language. For more information,
see “User-specified state/transition execution order”.

C on page 2-
28

Callbacks
Property Access Description Objects
ClickFcn RW Callback on click, specified as a character vector. This

callback contains MATLAB code to execute when to
execute when you click the annotation.

A on page 2-
2

DeleteFcn RW Callback at delete, specified as a character vector. This
callback contains MATLAB code to execute before you
delete the annotation.

A on page 2-
2

LoadFcn RW Callback at model load, specified as a character vector.
This callback contains MATLAB code to execute when
you load the model that contains the annotation.

A on page 2-
2

UseDisplayTextAsClic
kCallback

RW Whether to use the annotation text as a callback,
specified as a numeric or logical 1 (true) or 0
(false). When this property is enabled, the contents
of the Text property is used as the callback when you
click the annotation.

A on page 2-
2

Chart Initialization
Property Access Description Objects
ExecuteAtInitializat
ion

RW Whether to initialize the state configuration of the
chart or state transition table at time zero instead of at
the first input event, specified as a numeric or logical 1
(true) or 0 (false). For more information, see
“Execution of a Chart at Initialization”.

C on page 2-
28 STT on
page 2-156

InitializeOutput RW Whether to initialize the output data every time the
chart or state transition table wakes up, specified as a
numeric or logical 1 (true) or 0 (false). For more
information, see “Initialize outputs every time chart
wakes up”.

C on page 2-
28 STT on
page 2-156

4 API Property Reference

4-4



Property Access Description Objects
StatesWhenEnabling RW Behavior of the states when a function-call input event

reenables the chart or state transition table, specified
as one of these values:

• '' — The chart or state transition table does not
contain function-call input events.

• 'held' — The chart or state transition table
maintains the most recent values of the states.

• 'reset' — The chart or state transition table
reverts to the initial conditions of the states.

For more information, see “Control States in Charts
Enabled by Function-Call Input Events”.

C on page 2-
28 STT on
page 2-156

Code Generation
Property Access Description Objects
GeneratePreprocessor
Conditionals

RW Whether the generated code includes a preprocessor
conditional statement for the variant conditions in the
chart, specified as a numeric or logical 1 (true) or 0
(false). This property applies only when generating
code with Embedded Coder. For more information, see
“Code Generation Using Variant Transitions”.

C on page 2-
28

InlineOption RW Appearance of the state functions, graphical function,
MATLAB function, or truth table function in generated
code, specified as one of these values:

• 'Auto' — An internal calculation determines the
appearance of the functions in generated code.

• 'Function' — The functions are implemented as
a separate C functions.

• 'Inline' — Calls to the functions are replaced by
code.

For more information, see “Inline State Functions in
Generated Code” (Simulink Coder).

GF on page
2-88 MF on
page 2-68 S
on page 2-
140 TTF on
page 2-183

IsVariant RW Whether the transition is a variant transition, specified
as a numeric or logical 1 (true) or 0 (false). For
more information, see “Code Generation Using Variant
Transitions”.

T on page 2-
175

 List of Stateflow API Properties

4-5



Content
Property Access Description Objects
ActionLanguage RW Action language used to program the chart or state

transition table, specified as 'MATLAB' or 'C'. For
more information, see “Differences Between MATLAB
and C as Action Language Syntax”.

C on page 2-
28 STT on
page 2-156

ActionTable RW Action table for the truth table, specified as a cell
array of character vectors.

TTB on page
2-189 TTF on
page 2-183

Alignment RW Alignment of the annotation text, specified as 'LEFT',
'CENTER', or 'RIGHT'.

A on page 2-
2

AllowDirectFeedthrou
gh

RW Whether the MATLAB Function block supports direct
feedthrough semantics, specified as a numeric or
logical 1 (true) or 0 (false). For more information,
see “Allow direct feedthrough” (Simulink).

MFB on page
2-61

CommentText RW Comment text added to the graphical object, specified
as a character vector. This property applies only when
the IsExplicitlyCommented property is true. In
the Stateflow Editor, when you point to the comment
badge  on the graphical object, the text appears as a
tooltip. When you set the IsExplicitlyCommented
property to false, the value of CommentText reverts
to ''.

AB on page
2-8 AS on
page 2-13 B
on page 2-20
GF on page
2-88 J on
page 2-97
MF on page
2-68 P on
page 2-120
SBS on page
2-130 SF on
page 2-136 S
on page 2-
140 T on
page 2-175
TTF on page
2-183

Condition RO Transition condition, specified as a character vector.
The value of this property depends on the
LabelString property for the transition. For more
information, see “Specify Labels in States and
Transitions Programmatically” on page 1-16.

T on page 2-
175

ConditionAction RO Transition condition action, specified as a character
vector. The value of this property depends on the
LabelString property for the transition. For more
information, see “Specify Labels in States and
Transitions Programmatically” on page 1-16.

T on page 2-
175

ConditionTable RW Condition table for the truth table, specified as a cell
array of character vectors.

TTB on page
2-189 TTF on
page 2-183

4 API Property Reference

4-6



Property Access Description Objects
DuringAction RO State during action, specified as a character vector.

The value of this property depends on the
LabelString property for the state. For more
information, see “Specify Labels in States and
Transitions Programmatically” on page 1-16. This
property is not supported in Moore charts.

S on page 2-
140

EntryAction RO State entry action, specified as a character vector.
The value of this property depends on the
LabelString property for the state. For more
information, see “Specify Labels in States and
Transitions Programmatically” on page 1-16. This
property is not supported in Moore charts.

S on page 2-
140

ExecutionOrder RW Execution order for the transition when its source is
active, specified as an integer scalar. This property
applies only when the
UserSpecifiedStateTransitionExecutionOrder
property of the chart that contains the transition is
true. For more information, see “Transition
Evaluation Order”.

T on page 2-
175

ExitAction RO State exit action, specified as a character vector. The
value of this property depends on the LabelString
property for the state. For more information, see
“Specify Labels in States and Transitions
Programmatically” on page 1-16. This property is not
supported in Moore charts.

S on page 2-
140

FullFileName RO Full file path of the Simulink model for the machine,
specified as a character vector.

M on page 2-
104

Interpretation RW Format of the annotation text, specified as 'OFF',
'RICH', or 'TEX'.

A on page 2-
2

IsExplicitlyCommente
d

RW Whether to comment out the graphical object,
specified as a numeric or logical 1 (true) or 0
(false). Setting this property to true is equivalent to
right-clicking the graphical object and selecting
Comment Out. For more information, see
“Commenting Stateflow Objects in a Chart”.

AB on page
2-8 AS on
page 2-13 B
on page 2-20
GF on page
2-88 J on
page 2-97
MF on page
2-68 P on
page 2-120
SBS on page
2-130 SF on
page 2-136 S
on page 2-
140 T on
page 2-175
TTF on page
2-183

 List of Stateflow API Properties

4-7



Property Access Description Objects
IsImage RO Whether the annotation contains an image, specified

as a numeric or logical 1 (true) or 0 (false).
A on page 2-
2

IsImplicitlyCommente
d

RO Whether the graphical object is implicitly commented
out, specified as a numeric or logical 1 (true) or 0
(false). The graphical object is implicitly commented
out when you comment out a state, box, or function
that contains it. Additionally, transitions are implicitly
commented out when you comment out their source or
destination.

AB on page
2-8 AS on
page 2-13 B
on page 2-20
GF on page
2-88 J on
page 2-97
MF on page
2-68 P on
page 2-120
SBS on page
2-130 SF on
page 2-136 S
on page 2-
140 T on
page 2-175
TTF on page
2-183

IsLibrary RO Whether the Simulink model for the machine builds a
library and not an application, specified as a numeric
or logical 1 (true) or 0 (false).

M on page 2-
104

IsLink RO Whether the atomic box or subchart is a library link,
specified as a numeric or logical 1 (true) or 0
(false).

AB on page
2-8 AS on
page 2-13

LabelString RW Label for the graphical object, specified as a character
vector. For more information, see “Specify Labels in
States and Transitions Programmatically” on page 1-
16.

AB on page
2-8 AS on
page 2-13 B
on page 2-20
GF on page
2-88 MF on
page 2-68 P
on page 2-
120 SF on
page 2-136 S
on page 2-
140 T on
page 2-175
TTF on page
2-183

Language RW Action language used to program the truth table,
specified as 'MATLAB' or 'C'. The option 'C' is
supported only in truth tables in charts that use C as
the action language. For more information, see
“Differences Between MATLAB and C as Action
Language Syntax”.

TTF on page
2-183

4 API Property Reference

4-8



Property Access Description Objects
MooreAction RO State action in a Moore chart, specified as a character

vector. The value of this property depends on the
LabelString property for the state. For more
information, see “Specify Labels in States and
Transitions Programmatically” on page 1-16. This
property is supported only in Moore charts. For more
information, see “Design Rules for Moore Charts”.

S on page 2-
140

Name RO for all
Stateflow.
Machine
objects.

RW for all
other
objects.

Name of the object, specified as a character vector. AB on page
2-8 AS on
page 2-13 B
on page 2-20
C on page 2-
28 GF on
page 2-88 M
on page 2-
104 MF on
page 2-68
SBS on page
2-130 SF on
page 2-136 S
on page 2-
140 STT on
page 2-156
TTB on page
2-189 TTF on
page 2-183
MFB on page
2-61

OnAction RO State on actions, specified as a cell array of character
vectors in the form

{'trigger1','action1',...,'triggerN','actionN'}

The value of this property depends on the
LabelString property for the state. For more
information, see “Specify Labels in States and
Transitions Programmatically” on page 1-16. This
property is not supported in Moore charts.

S on page 2-
140

PlainText RO Annotation text without formatting, specified as a
character vector.

A on page 2-
2

PortType RO Type of junction, specified as 'EntryJunction',
'EntryPort', 'ExitJunction'or 'ExitPort'.

P on page 2-
120

 List of Stateflow API Properties

4-9



Property Access Description Objects
Script RW Code for the MATLAB function or MATLAB Function

block, specified as a character vector. To enter
multiple lines of code, you can:

• Call the MATLAB function sprintf and use the
escape sequence \n to insert newline characters:

str = sprintf('function y=f(x)\ny=x+1;\nend');
mfb.Script = str;

• Enter a concatenated text expression that uses the
integer 10 as the ASCII equivalent of a newline
character:

str = ['function y=f(x)',10, ...
    'y=x+1;',10, ...
    'end'];
mfb.Script = str;

MF on page
2-68 MFB on
page 2-61

StateMachineType RW State machine semantics implemented by the chart or
state transition table, specified as 'Classic',
'Mealy', or 'Moore'. For more information, see
“Overview of Mealy and Moore Machines”.

C on page 2-
28 STT on
page 2-156

SupportVariableSizin
g

RW Whether the chart, state transition table, truth table,
or MATLAB Function block supports variable-size data,
specified as a numeric or logical 1 (true) or 0
(false). Only variable-size data can change dimension
during simulation. For more information, see “Declare
Variable-Size Inputs and Outputs” (Simulink).

C on page 2-
28 STT on
page 2-156
TTB on page
2-189 MFB
on page 2-61

Text RW Text for the annotation, specified as a character vector. A on page 2-
2

TransitionAction RO Transition action, specified as a character vector. The
value of this property depends on the LabelString
property for the transition. For more information, see
“Specify Labels in States and Transitions
Programmatically” on page 1-16.

T on page 2-
175

Trigger RO Transition trigger, specified as a character vector. The
value of this property depends on the LabelString
property for the transition. For more information, see
“Specify Labels in States and Transitions
Programmatically” on page 1-16.

T on page 2-
175

Type RW Type of junction, specified as one of these values:

• 'CONNECTIVE' — Connective junction that
represents a decision point in a transition path

• 'HISTORY' — History junction that records the
activity of substates inside a superstate

J on page 2-
97

4 API Property Reference

4-10



Data Specification
Property Access Description Objects
CompiledSize RO Data size as determined by the compiler, specified as a

character vector.
D on page 2-
38 MS on
page 2-112

CompiledType RO Data type as determined by the compiler, specified as a
character vector.

D on page 2-
38 MS on
page 2-112

DataType RW Type of the data object or message data, specified as a
character vector that depends on the
Props.Type.Method property:

• If the Props.Type.Method property is
'Inherit', the value of this property is
'Inherit: From definition in chart' for
local data and 'Inherit: Same as Simulink'
for input data, output data, parameter data, and
messages.

• If the Props.Type.Method property is 'Built-
in', you can specify this property with one of these
options:

• 'double'
• 'single'
• 'int8'
• 'int16'
• 'int32'
• 'int64'
• 'uint8'
• 'uint16'
• 'uint32'
• 'uint64'
• 'boolean'
• 'ml' (Supported only in charts that use C as the

action language)
• 'string' (Supported only in charts that use C

as the action language)
• Otherwise, the Props.Type properties determine

the value of this property.

For more information, see the section Add Data on
page 1-0  in “Create Charts by Using the Stateflow
API” on page 1-19.

D on page 2-
38 MS on
page 2-112

 List of Stateflow API Properties

4-11



Property Access Description Objects
Props.Array.FirstInd
ex

RW Index for the first element of the array data object,
specified as a character vector. This property applies
only to array data in charts that use C as the action
language. For more information, see “Save Final Value
to Base Workspace”.

D on page 2-
38

Props.Array.IsDynami
c

RW Whether the data object has variable size, specified as
a numeric or logical 1 (true) or 0 (false). This
property applies only to input, output, and local data
and is equivalent to the Variable Size check box in the
Data properties dialog box. Use the Size property to
specify the maximum size for the data. For more
information, see “Declare Variable-Size Data in
Stateflow Charts”.

D on page 2-
38

Props.Array.Size RW Size of the data object or message data, specified as a
character vector. For more information, see “Specify
Size of Stateflow Data”.

D on page 2-
38 MS on
page 2-112

Props.Complexity RW Whether the data object or message accepts complex
values, specified as 'On' or 'Off'. For more
information, see “Complex Data in Stateflow Charts”.

D on page 2-
38 MS on
page 2-112

Props.InitialValue RW Initial value, specified as a character vector. D on page 2-
38 MS on
page 2-112

Props.Range.Maximum RW Maximum value for the data object, specified as a
character vector. For more information, see “Limit
Range”.

D on page 2-
38

Props.Range.Minimum RW Minimum value for the data object, specified as a
character vector. For more information, see “Limit
Range”.

D on page 2-
38

Props.ResolveToSigna
lObject

RW Whether the data object resolves to a
Simulink.Signal object that you define in the model
or base workspace, specified as a numeric or logical 1
(true) or 0 (false). For more information, see
“Resolve Data Properties from Simulink Signal
Objects”.

D on page 2-
38

Props.Type.BusObject RW Name of the Simulink.Bus object that defines the
data object or message data, specified as a character
vector. This property applies only when the
Props.Type.Method property is 'Bus Object'. For
more information, see “Access Bus Signals Through
Stateflow Structures”.

D on page 2-
38 MS on
page 2-112

Props.Type.EnumType RW Name of the enumerated type that defines the data
object or message data, specified as a character
vector. This property applies only when the
Props.Type.Method property is 'Enumerated'. For
more information, see “Reference Values by Name by
Using Enumerated Data”.

D on page 2-
38 MS on
page 2-112

4 API Property Reference

4-12



Property Access Description Objects
Props.Type.Expressio
n

RW Expression that evaluates to the data type of the data
object or message data, specified as a character
vector. This property applies only when the
Props.Type.Method property is 'Expression'. For
more information, see “Specify Data Properties by
Using MATLAB Expressions”.

D on page 2-
38 MS on
page 2-112

Props.Type.Fixpt.Bia
s

RW Bias, specified as a character vector. This property
applies only when the Props.Type.Method property
is 'Fixed point' and the
Props.Type.Fixpt.ScalingMode property is
'Slope and bias'. For more information, see
“Fixed-Point Data in Stateflow Charts”.

D on page 2-
38 MS on
page 2-112

Props.Type.Fixpt.Fra
ctionLength

RW Fraction length, in bits, specified as a character vector.
This property applies only when the
Props.Type.Method property is 'Fixed point'
and the Props.Type.Fixpt.ScalingMode property
is 'Binary point'. For more information, see
“Fixed-Point Data in Stateflow Charts”.

D on page 2-
38 MS on
page 2-112

Props.Type.Fixpt.Loc
k

RW Whether to prevent replacement of the fixed-point type
with an autoscaled type chosen by the Fixed-Point Tool
(Fixed-Point Designer), specified as a numeric or
logical 1 (true) or 0 (false). For more information,
see “Iterative Fixed-Point Conversion Using the Fixed-
Point Tool” (Fixed-Point Designer).

D on page 2-
38 MS on
page 2-112

Props.Type.Fixpt.Sca
lingMode

RW Method for scaling the fixed-point data object or
message data, specified as 'Binary point', 'Slope
and bias', or 'None'. This property applies only
when the Props.Type.Method property is 'Fixed
point'. For more information, see “Fixed-Point Data
in Stateflow Charts”.

D on page 2-
38 MS on
page 2-112

Props.Type.Fixpt.Slo
pe

RW Slope, specified as a character vector. This property
applies only when the Props.Type.Method property
is 'Fixed point' and the
Props.Type.Fixpt.ScalingMode property is
'Slope and bias'. For more information, see
“Fixed-Point Data in Stateflow Charts”.

D on page 2-
38 MS on
page 2-112

 List of Stateflow API Properties

4-13



Property Access Description Objects
Props.Type.Method RW Method for setting the type of the data object or

message data, specified as a character vector.

• For local, input, output, or parameter data, use
'Inherited', 'Built-in', 'Bus Object',
'Enumerated', 'Expression', or 'Fixed
point'.

• For constant data, use 'Built-in',
'Expression', or 'Fixed point'.

• For data store memory data, use 'Inherited'.
• For messages, use 'Inherited', 'Built-in',

'Bus Object', 'Enumerated', 'Expression',
or 'Fixed point'.

This property is equivalent to the Mode field of the
Data Type Assistant in the Model Explorer, the Data
properties dialog box, or the Message properties
dialog box. For more information, see “Specify Type of
Stateflow Data”.

D on page 2-
38 MS on
page 2-112

Props.Type.Signed RW Signedness, specified as a numeric or logical 1 (true)
or 0 (false). This property applies only when the
Props.Type.Method property is 'Fixed point'.
For more information, see “Fixed-Point Data in
Stateflow Charts”.

D on page 2-
38 MS on
page 2-112

Props.Type.WordLengt
h

RW Word length, in bits, specified as a character vector.
This property applies only when the
Props.Type.Method property is 'Fixed point'.
For more information, see “Fixed-Point Data in
Stateflow Charts”.

D on page 2-
38 MS on
page 2-112

Props.Unit.Name RW Name of unit of measurement for the data object,
specified as a character vector. This property applies
only to input and ouput data. For more information,
see “Specify Units for Stateflow Data”.

D on page 2-
38

4 API Property Reference

4-14



Debugging
Property Access Description Objects
Debug.Animation.Dela
y

RW Delay that the chart animation uses for highlighting
each transition segment in the machine, specified as a
scalar. These values correspond to the settings of the
Animation Speed drop-down list in the Debug tab:

Delay Value Animation Speed
0.5 Slow
0.2 Medium
0 Fast
-1 Lightning Fast

This property applies only when the
Debug.Animation.Enable property of the machine
is true.

M on page 2-
104

Debug.Animation.Enab
led

RW Whether to animate the charts in the machine during
simulation, specified as a numeric or logical 1 (true)
or 0 (false). Disabling this property is equivalent to
selecting None in the Animation Speed drop-down
list in the Debug tab.

M on page 2-
104

Debug.Animation.Main
tainHighlighting

RW Whether to maintain the highlighting of active states
in the machine after the simulation ends, specified as a
numeric or logical 1 (true) or 0 (false).

M on page 2-
104

Debug.Breakpoints.En
dBroadcast

RW Whether to set the End of Broadcast breakpoint for
the event, specified as a numeric or logical 1 (true) or
0 (false). For more information, see “Set Breakpoints
to Debug Charts”.

E on page 2-
78

Debug.Breakpoints.On
During

RW Whether to set the During State or During
Function Call breakpoint, specified as a numeric or
logical 1 (true) or 0 (false).

For truth tables, this property applies only when both
the Language property of the truth table and the
ActionLanguage of the chart that contains the truth
table are 'C' .

For more information, see “Set Breakpoints to Debug
Charts”.

AS on page
2-13 GF on
page 2-88
SBS on page
2-130 S on
page 2-140
TTF on page
2-183

Debug.Breakpoints.On
Entry

RW Whether to set the On Chart Entry or On State
Entry breakpoint, specified as a numeric or logical 1
(true) or 0 (false). For more information, see “Set
Breakpoints to Debug Charts”.

AS on page
2-13 C on
page 2-28
SBS on page
2-130 S on
page 2-140
STT on page
2-156

 List of Stateflow API Properties

4-15



Property Access Description Objects
Debug.Breakpoints.On
Exit

RW Whether to set the On State Exit or On State
Exitbreakpoint, specified as a numeric or logical 1
(true) or 0 (false). For more information, see “Set
Breakpoints to Debug Charts”.

AS on page
2-13 SBS on
page 2-130 S
on page 2-
140

Debug.Breakpoints.St
artBroadcast

RW Whether to set the Start of Broadcast breakpoint
for the event, specified as a numeric or logical 1
(true) or 0 (false). For more information, see “Set
Breakpoints to Debug Charts”.

E on page 2-
78

Debug.Breakpoints.Wh
enTested

RW Whether to set the When Transition is Tested
breakpoint for the transition, specified as a numeric or
logical 1 (true) or 0 (false). For more information,
see “Set Breakpoints to Debug Charts”.

T on page 2-
175

Debug.Breakpoints.Wh
enValid

RW Whether to set the When Transition is Valid
breakpoint for the transition, specified as a numeric or
logical 1 (true) or 0 (false). For more information,
see “Set Breakpoints to Debug Charts”.

T on page 2-
175

Debug.Watch RW Whether to track the value of the data object in the
Breakpoints and Watch window, specified as a numeric
or logical 1 (true) or 0 (false). For more information,
see “View Data in the Breakpoints and Watch
Window”.

D on page 2-
38

OverSpecDiagnostic RW Level of diagnostic action when the truth table is
overspecified, specified as 'Error', 'Warning', or
'None'. For more information, see “Correct
Overspecified and Underspecified Truth Tables”.

TTB on page
2-189 TTF on
page 2-183

TestPoint RW Whether to set the atomic subchart, state, Simulink
based state, or data object as a test point, specified as
a numeric or logical 1 (true) or 0 (false). For more
information, see “Monitor Test Points in Stateflow
Charts”.

AS on page
2-13 D on
page 2-38
SBS on page
2-130 S on
page 2-140

UnderSpecDiagnostic RW Level of diagnostic action when the truth table is
underspecified, specified as 'Error', 'Warning', or
'None'. For more information, see “Correct
Overspecified and Underspecified Truth Tables”.

TTB on page
2-189 TTF on
page 2-183

Discrete and Continuous-Time Semantics
Property Access Description Objects
ChartUpdate RW Activation method for the chart, state transition table,

truth table, or MATLAB Function block, specified as
'CONTINUOUS', 'DISCRETE', or 'INHERITED'. For
more information, see “Update Method”.

C on page 2-
28 STT on
page 2-156
TTB on page
2-189 MFB
on page 2-61

4 API Property Reference

4-16



Property Access Description Objects
EnableZeroCrossings RW Whether to enable zero-crossing detection on state

transitions in the chart or state transition table,
specified as a numeric or logical 1 (true) or 0
(false). This property applies only when the
ChartUpdate property for the chart is set to
'CONTINUOUS'. For more information, see “Disable
Zero-Crossing Detection”.

C on page 2-
28 STT on
page 2-156

SampleTime RW Sample time for activating the chart, state transition
table, truth table, or MATLAB Function block, specified
as a character vector. This property applies only when
the ChartUpdate property for the chart is
'DISCRETE'.

C on page 2-
28 STT on
page 2-156
TTB on page
2-189 MFB
on page 2-61

Exported Functions
Property Access Description Objects
AllowGlobalAccessToE
xportedFunctions

RW Whether exported functions from the chart are
globally visible in the Simulink model, specified as a
numeric or logical 1 (true) or 0 (false). When this
property is enabled, blocks throughout the model can
call functions exported from the chart without using
qualified notation. This property applies only when the
ExportChartFunctions property for the chart is
true.

C on page 2-
28

ExportChartFunctions RW Whether to export chart-level functions to other blocks
in the Simulink model, specified as a numeric or
logical 1 (true) or 0 (false). For more information,
see “Export Stateflow Functions for Reuse”.

C on page 2-
28

Graphical Appearance
Property Access Description Objects
ArrowSize RW For states, subcharts, ports, and junctions, size of

incoming transition arrows, specified as a scalar.

For transitions, size of the transition arrow at the
destination. When you change the destination of the
transition, this property resets to the value of the
ArrowSize property of the new destination.

AS on page
2-13 J on
page 2-97 P
on page 2-
120 SBS on
page 2-130 S
on page 2-
140 T on
page 2-175

 List of Stateflow API Properties

4-17



Property Access Description Objects
AutoBackgroundColor RW Whether to use the default background color, specified

as a numeric or logical 1 (true) or 0 (false).

• true — Use the default color specified by the
ChartColor property of the chart that contains
the annotation.

• false — Use the color specified by the
BackgroundColor property of the annotation.

A on page 2-
2

AutoForegroundColor RW Whether to use the default foreground color, specified
as a numeric or logical 1 (true) or 0 (false).

• true — Use the default color specified by the
StateLabelColor property of the chart that
contains the annotation.

• false — Use the color specified by the
ForegroundColor property of the annotation.

A on page 2-
2

BackgroundColor RW Background color for the annotation, specified as a
three-element numeric vector of the form [red green
blue] that specifies the red, green, and blue values.
Each element must be in the range between 0 and 1.
This property applies only when the
AutoBackgroundColor property is false.

A on page 2-
2

BadIntersection RO Whether a box, state, or function graphically intersects
another box, state, or function, specified as a numeric
or logical 1 (true) or 0 (false).

AB on page
2-8 AS on
page 2-13 B
on page 2-20
GF on page
2-88 MF on
page 2-68
SBS on page
2-130 SF on
page 2-136 S
on page 2-
140 TTF on
page 2-183

ChartColor RW Background color for the chart, specified as a three-
element numeric vector of the form [red green
blue] that specifies the red, green, and blue values.
Each element must be in the range between 0 and 1.

For state transition tables, this property controls the
appearance of the chart that is automatically
generated for the state transition table.

C on page 2-
28 STT on
page 2-156

4 API Property Reference

4-18



Property Access Description Objects
ContentPreviewEnable
d

RW Whether to display a preview of the contents of the
object, specified as a numeric or logical 1 (true) or 0
(false).

For boxes, states, or graphical functions, this property
applies only when the IsSubchart property is true.

AB on page
2-8 AS on
page 2-13 B
on page 2-20
GF on page
2-88 SBS on
page 2-130
SF on page
2-136 S on
page 2-140

Destination RW Destination of the transition, specified as an empty
array or a Stateflow API object of one of these types:

• Stateflow.AtomicBox
• Stateflow.AtomicSubchart
• Stateflow.Box
• Stateflow.Junction
• Stateflow.SimulinkBasedState
• Stateflow.State

T on page 2-
175

DestinationEndPoint RW Position of the transition endpoint at its destination,
specified as a two-element numeric vector [x y] of
coordinates relative to the upper left corner of the
chart.

T on page 2-
175

DestinationOClock RW Location of the transition endpoint at its destination,
specified as a scalar between 0 and 12 that describes a
clock position.

T on page 2-
175

DropShadow RW Whether to display a drop shadow around the
annotation box, specified as a numeric or logical 1
(true) or 0 (false).

A on page 2-
2

Editor RO Editor for the chart or state transition table, specified
as a Stateflow.Editor object. You can use this
object to control the position, size, and magnification
level of the Stateflow Editor window.

C on page 2-
28 STT on
page 2-156

FixedHeight RW Whether to fix height of the annotation box, specified
as a numeric or logical 1 (true) or 0 (false).

• true — Fixes the height of the annotation box and
hides content that is longer than the box.

• false — Resizes the annotation box vertically as
you add content.

A on page 2-
2

 List of Stateflow API Properties

4-19



Property Access Description Objects
FixedWidth RW Whether to fix height of the annotation box, specified

as a numeric or logical 1 (true) or 0 (false).

• true — Fixes the width of the annotation box and
wraps text that is longer than the box.

• false — Resizes the annotation box horizontally as
you add content.

A on page 2-
2

Font.Angle RW Font angle for the annotation text, specified as
'NORMAL' or 'ITALIC'.

A on page 2-
2

Font.Name RO Font name for the annotation text, specified as a
character vector. The StateFont.Name property of
the chart that contains the annotation sets the value of
this property.

A on page 2-
2

Font.Size RW Font size for the annotation text, specified as a scalar.
The StateFont.Size property of the chart that
contains the annotation sets the initial value of this
property.

A on page 2-
2

Font.Weight RW Font weight for the annotation text, specified as
'NORMAL' or 'BOLD'.

A on page 2-
2

FontSize RW Font size for the label of a box, state, function, or
transition, specified as a scalar. The StateFont.Size
property of the chart that contains the graphical
function sets the initial value of this property.

AB on page
2-8 AS on
page 2-13 B
on page 2-20
GF on page
2-88 MF on
page 2-68
SBS on page
2-130 SF on
page 2-136 S
on page 2-
140 T on
page 2-175
TTF on page
2-183

ForegroundColor RW Foreground color for the annotation, specified as a
three-element numeric vector of the form [red green
blue] that specifies the red, green, and blue values.
Each element must be in the range between 0 and 1.
This property applies only when the
AutoForegroundColor property is false.

A on page 2-
2

InternalMargins RW Space between the text and the border of the
annotation box, specified as a four-element numeric
vector of the form [left top right bottom].

A on page 2-
2

4 API Property Reference

4-20



Property Access Description Objects
IsGrouped RW Whether the box, function, or state is grouped,

specified as a numeric or logical 1 (true) or 0
(false). When you copy and paste a grouped object,
you copy not only the object but all of its contents. For
more information, see “Copy and Paste by Grouping”
on page 2-24.

B on page 2-
20 GF on
page 2-88 S
on page 2-
140

IsSubchart RW Whether the box, function, or state is a subchart,
specified as a numeric or logical 1 (true) or 0
(false).

B on page 2-
20 GF on
page 2-88 S
on page 2-
140

JunctionColor RW Color for junctions in the chart, specified as a three-
element numeric vector of the form [red green
blue] that specifies the red, green, and blue values.
Each element must be in the range between 0 and 1.

For state transition tables, this property controls the
appearance of the chart that is automatically
generated for the state transition table.

C on page 2-
28 STT on
page 2-156

LabelPosition RW Position and size of the transition, port, or junction
label, specified as a four-element numeric vector of the
form [left top width height].

T on page 2-
175 P on
page 2-120

MidPoint RW Position of the midpoint of the transition, specified as a
two-element numeric vector [x y] of coordinates
relative to the upper left corner of the chart.

T on page 2-
175

Position RW Position and size of the graphical object, specified as a
four-element numeric vector of the form [left top
width height].

A on page 2-
2 AB on page
2-8 AS on
page 2-13 B
on page 2-20
GF on page
2-88 MF on
page 2-68
SBS on page
2-130 SF on
page 2-136 S
on page 2-
140 TTF on
page 2-183

Position.Center RW Position of the center of the port or junction, specified
as a two-element numeric vector [x y] of coordinates
relative to the upper left corner of the chart.

J on page 2-
97 P on page
2-120

Position.Radius RW Radius of the port or junction, specified as a scalar. J on page 2-
97 P on page
2-120

 List of Stateflow API Properties

4-21



Property Access Description Objects
Source RW Source of the transition, specified as an empty array or

a Stateflow API object of one of these types:

• Stateflow.AtomicBox
• Stateflow.AtomicSubchart
• Stateflow.Box
• Stateflow.Junction
• Stateflow.SimulinkBasedState
• Stateflow.State

T on page 2-
175

SourceEndPoint RW Position of the transition endpoint at its source,
specified as a two-element numeric vector [x y] of
coordinates relative to the upper left corner of the
chart.

T on page 2-
175

SourceOClock RW Location of the transition endpoint at its source,
specified as a scalar between 0 and 12 that describes a
clock position.

T on page 2-
175

StateColor RW Color for the boxes, functions, and states in the chart,
specified as a three-element numeric vector of the
form [red green blue] that specifies the red,
green, and blue values. Each element must be in the
range between 0 and 1.

For state transition tables, this property controls the
appearance of the chart that is automatically
generated for the state transition table.

C on page 2-
28 STT on
page 2-156

StateFont.Angle RW Font angle for the box, function, and state labels in the
chart, specified as 'NORMAL' or 'ITALIC'.

For state transition tables, this property controls the
appearance of the chart that is automatically
generated for the state transition table.

C on page 2-
28 STT on
page 2-156

StateFont.Name RW Font name for the annotation, box, function, and state
labels in the chart, specified as a character vector.

For state transition tables, this property controls the
appearance of the chart that is automatically
generated for the state transition table.

C on page 2-
28 STT on
page 2-156

StateFont.Size RW Initial font size for the annotation, box, function, and
state labels in the chart, specified as a scalar.

For state transition tables, this property controls the
appearance of the chart that is automatically
generated for the state transition table.

C on page 2-
28 STT on
page 2-156

4 API Property Reference

4-22



Property Access Description Objects
StateFont.Weight RW Font weight for the box, function, and state labels in

the chart, specified as 'NORMAL' or 'BOLD'.

For state transition tables, this property controls the
appearance of the chart that is automatically
generated for the state transition table.

C on page 2-
28 STT on
page 2-156

StateLabelColor RW Color for the box, function, and state labels in the
chart, specified as a three-element numeric vector of
the form [red green blue] that specifies the red,
green, and blue values. Each element must be in the
range between 0 and 1.

For state transition tables, this property controls the
appearance of the chart that is automatically
generated for the state transition table.

C on page 2-
28 STT on
page 2-156

TransitionColor RW Color for transitions in the chart, specified as a three-
element numeric vector of the form [red green
blue] that specifies the red, green, and blue values.
Each element must be in the range between 0 and 1.

For state transition tables, this property controls the
appearance of the chart that is automatically
generated for the state transition table.

C on page 2-
28 STT on
page 2-156

TransitionFont.Angle RW Font angle for the transition labels in the chart,
specified as 'NORMAL' or 'ITALIC'.

For state transition tables, this property controls the
appearance of the chart that is automatically
generated for the state transition table.

C on page 2-
28 STT on
page 2-156

TransitionFont.Name RW Font name for the transition labels in the chart,
specified as a character vector.

For state transition tables, this property controls the
appearance of the chart that is automatically
generated for the state transition table.

C on page 2-
28 STT on
page 2-156

TransitionFont.Size RW Initial font size for the transition labels in the chart,
specified as a scalar.

For state transition tables, this property controls the
appearance of the chart that is automatically
generated for the state transition table.

C on page 2-
28 STT on
page 2-156

TransitionFont.Weigh
t

RW Font weight for the transition labels in the chart,
specified as 'NORMAL' or 'BOLD'.

For state transition tables, this property controls the
appearance of the chart that is automatically
generated for the state transition table.

C on page 2-
28 STT on
page 2-156

 List of Stateflow API Properties

4-23



Property Access Description Objects
TransitionLabelColor RW Color for the transition labels in the chart, specified as

a three-element numeric vector of the form [red
green blue] that specifies the red, green, and blue
values. Each element must be in the range between 0
and 1.

For state transition tables, this property controls the
appearance of the chart that is automatically
generated for the state transition table.

C on page 2-
28 STT on
page 2-156

Visible RW Whether the Stateflow Editor window is displaying the
chart or state transition table, specified as a numeric
or logical 1 (true) or 0 (false).

C on page 2-
28 STT on
page 2-156

Hierarchy
Property Access Description Objects
Chart RO Chart that contains the object, specified as a

Stateflow.Chart object.
A on page 2-
2 AB on page
2-8 AS on
page 2-13 B
on page 2-20
GF on page
2-88 J on
page 2-97
MF on page
2-68 P on
page 2-120
SBS on page
2-130 SF on
page 2-136 S
on page 2-
140 T on
page 2-175
TTF on page
2-183

Dirty RW Whether the chart, state transition table, truth table,
MATLAB Function block, or the Simulink model for the
Stateflow machine has changed after being opened or
saved, specified as a numeric or logical 1 (true) or 0
(false).

C on page 2-
28 M on
page 2-104
STT on page
2-156 TTB on
page 2-189
MFB on page
2-61

Home RO Home state or subchart, specified as a
Stateflow.State or Stateflow.AtomicSubchart
object. The home of an entry or exit port is the state or
subchart whose boundary contains the port. This
property applies only to entry and exit ports.

P on page 2-
120

4 API Property Reference

4-24



Property Access Description Objects
Iced RO Whether the chart, state transition table, truth table,

MATLAB Function block, or the Simulink model for the
Stateflow machine is locked, specified as a numeric or
logical 1 (true) or 0 (false). This property is
equivalent to the property Locked, but is used
internally to prevent changes in the chart, block, or
model during simulation.

C on page 2-
28 M on
page 2-104
STT on page
2-156 TTB on
page 2-189
MFB on page
2-61

Linked RO Whether the port or junction has a matching junction
or port, specified as a numeric or logical 1 (true) or 0
(false). This property is used to detect internal
inconsistencies in the chart.

P on page 2-
120

Locked RW Whether the chart, state transition table, truth table,
MATLAB Function block, or the Simulink model for the
Stateflow machine is locked, specified as a numeric or
logical 1 (true) or 0 (false). Enable this property to
prevent changes in the chart, block, or model.

C on page 2-
28 M on
page 2-104
STT on page
2-156 TTB on
page 2-189
MFB on page
2-61

Machine RO Machine that contains the object, specified as a
Stateflow.Machine object.

A on page 2-
2 AB on page
2-8 AS on
page 2-13 B
on page 2-20
C on page 2-
28 D on page
2-38 E on
page 2-78 GF
on page 2-88
J on page 2-
97 MF on
page 2-68
MS on page
2-112 P on
page 2-120
SBS on page
2-130 SF on
page 2-136 S
on page 2-
140 STT on
page 2-156 T
on page 2-
175 TTB on
page 2-189
TTF on page
2-183 MFB
on page 2-61

 List of Stateflow API Properties

4-25



Property Access Description Objects
Path RO Location of the object in the model hierarchy, specified

as a character vector.
A on page 2-
2 AB on page
2-8 AS on
page 2-13 B
on page 2-20
C on page 2-
28 D on page
2-38 E on
page 2-78 GF
on page 2-88
J on page 2-
97 M on
page 2-104
MF on page
2-68 MS on
page 2-112 P
on page 2-
120 SBS on
page 2-130
SF on page
2-136 S on
page 2-140
STT on page
2-156 T on
page 2-175
TTB on page
2-189 TTF on
page 2-183
MFB on page
2-61

Subchart RO Contents of the atomic box or subchart, specified as a
Stateflow.Chart object. Use this object to add
children, such as states and transitions, to an atomic
subchart.

AB on page
2-8 AS on
page 2-13

4 API Property Reference

4-26



Property Access Description Objects
Subviewer RO Subviewer for the graphical object, specified as a

Stateflow.Chart, Stateflow.State,
Stateflow.Box, or Stateflow.Function object.
The subviewer is the chart or subchart where you can
graphically view the object.

A on page 2-
2 AB on page
2-8 AS on
page 2-13 B
on page 2-20
GF on page
2-88 J on
page 2-97
MF on page
2-68 P on
page 2-120
SBS on page
2-130 SF on
page 2-136 S
on page 2-
140 T on
page 2-175
TTF on page
2-183

Identification
Property Access Description Objects
Created RO Date of the creation of the machine, specified as a

character vector.
M on page 2-
104

Creator RW Creator of the machine, specified as a character
vector.

M on page 2-
104

 List of Stateflow API Properties

4-27



Property Access Description Objects
Description RW Description for the object, specified as a character

vector.
A on page 2-
2 AB on page
2-8 AS on
page 2-13 B
on page 2-20
C on page 2-
28 D on page
2-38 E on
page 2-78 GF
on page 2-88
J on page 2-
97 M on
page 2-104
MF on page
2-68 MS on
page 2-112 P
on page 2-
120 SBS on
page 2-130
SF on page
2-136 S on
page 2-140
STT on page
2-156 T on
page 2-175
TTB on page
2-189 TTF on
page 2-183
MFB on page
2-61

4 API Property Reference

4-28



Property Access Description Objects
Document RW Document link for the object, specified as a character

vector.
A on page 2-
2 AB on page
2-8 AS on
page 2-13 B
on page 2-20
C on page 2-
28 D on page
2-38 E on
page 2-78 GF
on page 2-88
J on page 2-
97 M on
page 2-104
MF on page
2-68 MS on
page 2-112 P
on page 2-
120 SBS on
page 2-130
SF on page
2-136 S on
page 2-140
STT on page
2-156 T on
page 2-175
TTB on page
2-189 TTF on
page 2-183
MFB on page
2-61

 List of Stateflow API Properties

4-29



Property Access Description Objects
Id RO Unique identifier, specified as an integer scalar. Use

this property to distinguish the object from other
objects in the model. The value of this property is
reassigned every time you start a new MATLAB
session and may be recycled after an object is deleted.

A on page 2-
2 AB on page
2-8 AS on
page 2-13 B
on page 2-20
C on page 2-
28 D on page
2-38 E on
page 2-78 GF
on page 2-88
J on page 2-
97 M on
page 2-104
MF on page
2-68 MS on
page 2-112 P
on page 2-
120 SBS on
page 2-130
SF on page
2-136 S on
page 2-140
STT on page
2-156 T on
page 2-175
TTB on page
2-189 TTF on
page 2-183
MFB on page
2-61

Modified RW Record of modifications to the machine, specified as a
character vector.

M on page 2-
104

4 API Property Reference

4-30



Property Access Description Objects
SSIdNumber RO Session-independent identifier, specified as an integer

scalar. Use this property to distinguish the object from
other objects in the model.

AB on page
2-8 AS on
page 2-13 D
on page 2-38
GF on page
2-88 J on
page 2-97
MF on page
2-68 MS on
page 2-112 P
on page 2-
120 SBS on
page 2-130
SF on page
2-136 S on
page 2-140 T
on page 2-
175 TTF on
page 2-183

Tag RW User-defined tag for the object, specified as data of
any type.

A on page 2-
2 AB on page
2-8 AS on
page 2-13 B
on page 2-20
C on page 2-
28 D on page
2-38 E on
page 2-78 GF
on page 2-88
J on page 2-
97 M on
page 2-104
MF on page
2-68 MS on
page 2-112 P
on page 2-
120 SBS on
page 2-130
SF on page
2-136 S on
page 2-140
STT on page
2-156 T on
page 2-175
TTB on page
2-189 TTF on
page 2-183
MFB on page
2-61

 List of Stateflow API Properties

4-31



Property Access Description Objects
Version RW Version of the machine, specified as a character vector. M on page 2-

104

Integer and Fixed-Point Data
Property Access Description Objects
EmlDefaultFimath RW Default fimath properties for the chart, state

transition table, truth table, or MATLAB function,
specified as one of these values:

• 'Same as MATLAB Default' — Use the same
fimath properties as the current default fimath
object.

• 'Other:UserSpecified' — Use the
InputFimath property to specify the default
fimath object.

For charts and state transition tables, this property
applies only when the ActionLanguage property is
'MATLAB'.

For MATLAB functions, this property applies only
when the ActionLanguage of the chart that contains
the function is 'C'.

For truth table functions, this property applies only
when the Language property of the truth table is
'MATLAB' and the ActionLanguage of the chart that
contains the truth table is 'C'.

C on page 2-
28 MF on
page 2-68
STT on page
2-156 TTB on
page 2-189
TTF on page
2-183 MFB
on page 2-61

4 API Property Reference

4-32



Property Access Description Objects
InputFimath RW Default fimath object, specified as a character vector.

When the EmlDefaultFimath property of the chart,
state transition table, truth table, or MATLAB function
is 'Other:UserSpecified', you can use this
property to:

• Enter an expression that constructs a fimath
object.

• Enter the variable name for a fimath object in the
MATLAB or model workspace.

For charts and state transition tables, this property
applies only when the ActionLanguage property is
'MATLAB'.

For MATLAB functions, this property applies only
when the ActionLanguage of the chart that contains
the function is 'C'.

For truth table functions, this property applies only
when the Language property of the truth table is
'MATLAB' and the ActionLanguage of the chart that
contains the truth table is 'C'.

C on page 2-
28 MF on
page 2-68
STT on page
2-156 TTB on
page 2-189
TTF on page
2-183 MFB
on page 2-61

SaturateOnIntegerOve
rflow

RW Whether the data in the chart, state transition table,
truth table, or MATLAB function saturates on integer
overflow, specified as a numeric or logical 1 (true) or
0 (false). When this property is disabled, the data
wraps on integer overflow. For more information, see
“Saturate on integer overflow” (Simulink).

For MATLAB functions, this property applies only
when the ActionLanguage of the chart that contains
the function is 'C'.

For truth table functions, this property applies only
when the Language property of the truth table is
'MATLAB' and the ActionLanguage of the chart that
contains the truth table is 'C'.

C on page 2-
28 MF on
page 2-68
STT on page
2-156 TTB on
page 2-189
TTF on page
2-183 MFB
on page 2-61

 List of Stateflow API Properties

4-33



Property Access Description Objects
TreatAsFi RW Inherited Simulink signals to treat as Fixed-Point

Designer fi objects, specified as one of these values:

• 'Fixed-point' — The chart, state transition
table, truth table, or MATLAB Function block treats
all fixed-point inputs as fi objects.

• 'Fixed-point & Integer' — The chart, state
transition table, truth table, or MATLAB Function
block treats all fixed-point and integer inputs as fi
objects.

For charts and state transition tables, this property
applies only when the ActionLanguage property is
'MATLAB'.

C on page 2-
28 STT on
page 2-156
TTB on page
2-189 MFB
on page 2-61

Interface
Property Access Description Objects
InitializeMethod RW Method for initializing the value of the data object or

message data, specified as a character vector that
depends on the scope of the data or message:

• For local and output data and messages, use
'Expression' or 'Parameter'.

• For constant data, use 'Expression'.
• For input data and messages, parameters, and data

store memory, use 'Not Needed'.

To specify the initial value, use the
Props.InitialValue property.

D on page 2-
38 MS on
page 2-112

Inputs RO Input arguments of the MATLAB Function block,
specified as an array of Stateflow.Data objects.

MFB on page
2-61

Name RW Name of the data object, event, or message, specified
as a character vector.

D on page 2-
38 E on page
2-78 MS on
page 2-112

Outputs RO Output arguments of the MATLAB Function block,
specified as an array of Stateflow.Data objects.

MFB on page
2-61

Port RW Port index for the data object, event, or message
specified as an integer scalar. This property applies
only to input and output data, events, and messages.

D on page 2-
38 E on page
2-78 MS on
page 2-112

4 API Property Reference

4-34



Property Access Description Objects
Priority RW Priority for the message, specified as a character

vector. If two distinct messages occur at the same
time, this property determines which message is
processed first. A smaller numeric value indicates a
higher priority. This property applies only to local and
output messages in discrete-event charts. For more
information, see “Create Custom Queuing Systems
Using Discrete-Event Stateflow Charts” (SimEvents).

MS on page
2-112

SaveToWorkspace RW Whether to save the value of the data object to a
variable of the same name in the MATLAB base
workspace at the end of the simulation, specified as a
numeric or logical 1 (true) or 0 (false). This
property applies only to data in charts that use C as
the action language. For more information, see “Save
Final Value to Base Workspace”.

D on page 2-
38

Scope RW Scope of the data object, event, or message, specified
as one of these values:

• 'Local'
• 'Input'
• 'Output'
• 'Constant'
• 'Parameter'
• 'Data Store Memory'
• 'Temporary'
• 'Imported'
• 'Exported'

D on page 2-
38 E on page
2-78 MS on
page 2-112

Trigger RW Type of trigger associated with the event, specified as
a character vector that depends on the scope of the
data:

• For input events, use 'Function call',
'Rising', 'Falling', or 'Either'.

• For output events, use 'Function call' or
'Either'.

This property does not apply to local events. For more
information, see “Trigger”.

E on page 2-
78

Tunable RW Whether the data object is a tunable parameter,
specified as a numeric or logical 1 (true) or 0
(false). Only tunable parameters can be modified
during simulation. This property applies only to
parameter data.

D on page 2-
38

 List of Stateflow API Properties

4-35



Property Access Description Objects
UpdateMethod RW Method for updating data object, specified as

'Discrete' or 'Continuous'. This property applies
only when the ChartUpdate property of the chart that
contains the data is 'CONTINUOUS'. For more
information, see “Continuous-Time Modeling in
Stateflow”.

D on page 2-
38

Queue
Property Access Description Objects
MessagePriorityOrder RW Type of priority queue for the message, specified as

one of these values:

• 'Ascending' — Messages are received in
ascending order of the message data value.

• 'Descending' — Messages are received in
descending order of the message data value.

This property applies only when the QueueType
property of the message is 'Priority'. For more
information, see “Queue Type”.

MS on page
2-112

QueueCapacity RW Length of the internal queue for the message, specified
as an integer scalar. This property applies only to local
messages and to input messages that have
UseInternalQueue set to true. For more
information, see “Queue Capacity”.

MS on page
2-112

QueueOverflowDiagnos
tic

RW Level of diagnostic action when the number of
incoming messages exceeds the queue capacity for the
message, specified as 'Error', 'Warning', or
'None'. This property applies only to local messages
and to input messages that have UseInternalQueue
set to true. For more information, see “Queue
Overflow Diagnostic”.

MS on page
2-112

QueueType RW Order in which messages are removed from the
receiving queue, specified as one of these values:

• 'FIFO' — First in, first out.
• 'LIFO' — Last in, first out.
• 'Priority' — Remove messages according to the

value in the data field. To specify the order, use the
MessagePriorityOrder property for the
message.

This property applies only to local messages and to
input messages that have UseInternalQueue set to
true. For more information, see “Queue Type”.

MS on page
2-112

4 API Property Reference

4-36



Property Access Description Objects
UseInternalQueue RW Whether the Stateflow chart maintains an internal

receiving queue for the input message, specified as a
numeric or logical 1 (true) or 0 (false). This
property applies only to input messages. For more
information, see “Use Internal Queue”.

MS on page
2-112

Signal Logging
Property Access Description Objects
LoggingInfo.DataLogg
ing

RW Whether to enable signal logging for the atomic
subchart, state, Simulink based state, or data object,
specified as a numeric or logical 1 (true) or 0
(false). For more information, see “Log Simulation
Output for States and Data”.

AS on page
2-13 D on
page 2-38
SBS on page
2-130 S on
page 2-140

LoggingInfo.Decimate
Data

RW Whether to limit the amount of logged data, specified
as a numeric or logical 1 (true) or 0 (false). When
this property is true, signal logging skips samples by
using the interval size specified by the
LoggingInfo.Decimation property.

AS on page
2-13 D on
page 2-38
SBS on page
2-130 S on
page 2-140

LoggingInfo.Decimati
on

RW Decimation interval, specified as an integer scalar.
This property applies only when the
LoggingInfo.DecimateData property is true. The
default value of 2 means that the chart logs every
other sample.

AS on page
2-13 D on
page 2-38
SBS on page
2-130 S on
page 2-140

LoggingInfo.LimitDat
aPoints

RW Whether to limit the number of data points to log,
specified as a numeric or logical 1 (true) or 0
(false). When this property is true, signal logging
limits the number of data points by using the value
specified by the LoggingInfo.MaxPoints property.

AS on page
2-13 D on
page 2-38
SBS on page
2-130 S on
page 2-140

LoggingInfo.LoggingN
ame

RW Custom signal name for the atomic subchart, state,
Simulink based state, or data object, specified as a
character vector. This property applies only when the
LoggingInfo.NameMode property is 'Custom'.

AS on page
2-13 D on
page 2-38
SBS on page
2-130 S on
page 2-140

LoggingInfo.MaxPoint
s

RW Maximum number of data points to log, specified as an
integer scalar. This property applies only when the
LoggingInfo.LimitDataPoints property is true.
The default value of 5000 means the chart logs the last
5000 data points generated by the simulation.

AS on page
2-13 D on
page 2-38
SBS on page
2-130 S on
page 2-140

 List of Stateflow API Properties

4-37



Property Access Description Objects
LoggingInfo.NameMode RW Source of the signal name used to log the atomic

subchart, state, Simulink based state, or data object,
specified as one of these values:

• 'SignalName' — Use the name of the atomic
subchart, state, Simulink based state, or data
object.

• 'Custom' — Use the custom signal name specified
by the LoggingInfo.LoggingName property.

AS on page
2-13 D on
page 2-38
SBS on page
2-130 S on
page 2-140

State Decomposition
Property Access Description Objects
Decomposition RW Decomposition of substates at the top level of

containment in the chart or state, specified as
'EXCLUSIVE_OR' or 'PARALLEL_AND'. For more
information, see “Specify Substate Decomposition”.

C on page 2-
28 S on page
2-140

ExecutionOrder RW Execution order for the atomic subchart, state, or
Simulink based state in parallel (AND) decomposition,
specified as an integer scalar. This property applies
only when both of these conditions are satisfied:

• The Type property is 'AND'.
• The

UserSpecifiedStateTransitionExecutionOr
der property of the chart that contains the atomic
subchart, state, or Simulink based state is true.

AS on page
2-13 SBS on
page 2-130 S
on page 2-
140

Type RO Decomposition of sibling states, specified as 'OR' or
'AND'. The atomic subchart, state, or Simulink based
state inherits this property from the Decomposition
property of its parent state or chart.

AS on page
2-13 SBS on
page 2-130 S
on page 2-
140

Super Step Semantics
Property Access Description Objects
EnableNonTerminalSta
tes

RW Whether to enable super step semantics for the chart
or state transition table, specified as a numeric or
logical 1 (true) or 0 (false). For more information,
see “Super Step Semantics”.

C on page 2-
28 STT on
page 2-156

NonTerminalMaxCounts RW Maximum number of transitions the chart or state
transition table can take in one super step, specified as
an integer scalar. This property applies only when the
EnableNonTerminalStates property is true.

C on page 2-
28 STT on
page 2-156

4 API Property Reference

4-38



Property Access Description Objects
NonTerminalUnstableB
ehavior

RW Behavior if a super step for the chart or state
transition table exceeds the maximum number of
transitions specified in the NonTerminalMaxCounts
property before reaching a stable state, specified as
one of these values:

• 'Proceed' — The chart or state transition table
goes to sleep with the last active state
configuration.

• 'Throw Error' — The chart or state transition
table generates an error.

This property applies only when the
EnableNonTerminalStates property is true.

C on page 2-
28 STT on
page 2-156

See Also
sfclipboard | sfnew | sfroot

More About
• “Create Charts by Using the Stateflow API” on page 1-19
• “Create and Delete Stateflow Objects” on page 1-13
• “Modify Properties and Call Functions of Stateflow Objects” on page 1-11

 List of Stateflow API Properties

4-39




	Using the Stateflow API
	Overview of the Stateflow API
	Hierarchy of Stateflow API Objects
	Access Stateflow API Objects
	Modify Properties of API Objects
	Call API Object Functions

	Access Objects in Your Stateflow Chart
	Find Objects in a Chart
	Navigate the Stateflow Hierarchy
	Retrieve Recently Selected Objects

	Modify Properties and Call Functions of Stateflow Objects
	Call Object Functions
	Access Properties by Using Dot Notation
	Get and Set the Values of Multiple Properties

	Create and Delete Stateflow Objects
	Create Stateflow Objects
	Delete Stateflow Objects

	Specify Labels in States and Transitions Programmatically
	Enter Labels on Transitions
	Enter Multiline Labels in States

	Create Charts by Using the Stateflow API
	Create Charts by Using a MATLAB Script

	API Object Reference
	Stateflow.Annotation
	Stateflow.AtomicBox
	Stateflow.AtomicSubchart
	Stateflow.Box
	Stateflow.Clipboard
	Stateflow.Chart
	Stateflow.Data
	Stateflow.DataArray
	Stateflow.DataDebug
	Stateflow.DataProps
	Stateflow.DataRange
	Stateflow.DataType
	Stateflow.Editor
	Stateflow.EMChart
	Stateflow.EMFunction
	Stateflow.ChartBreakpoints
	Stateflow.ChartDebug
	Stateflow.Event
	Stateflow.EventBreakpoints
	Stateflow.EventDebug
	Stateflow.FixptType
	Stateflow.Function
	Stateflow.FunctionBreakpoint
	Stateflow.FunctionDebug
	Stateflow.Junction
	Stateflow.JunctionPosition
	Stateflow.Machine
	Stateflow.MachineAnimation
	Stateflow.MachineDebug
	Stateflow.Message
	Stateflow.NoteFont
	Stateflow.Port
	Stateflow.PortPosition
	Stateflow.SigLoggingInfo
	Stateflow.SimulinkBasedState
	Stateflow.SLFunction
	Stateflow.State
	Stateflow.StateBreakpoints
	Stateflow.StateDebug
	Stateflow.StateFont
	Stateflow.StateTransitionTableChart
	Stateflow.STTStateFont
	Stateflow.STTTransFont
	Stateflow.TransBreakpoints
	Stateflow.TransDebug
	Stateflow.TransFont
	Stateflow.Transition
	Stateflow.TruthTable
	Stateflow.TruthTableChart
	Stateflow.Unit

	API Object Function Reference
	copy
	defaultTransitions
	dialog
	find
	fitToView
	getChildren
	getParent
	highlight
	innerTransitions
	isCommented
	outerTransitions
	pasteTo
	setImage
	sinkedTransitions
	sourcedTransitions
	up
	view
	zoomIn
	zoomOut

	API Property Reference
	List of Stateflow API Properties
	Active State Output
	C Action Language
	Callbacks
	Chart Initialization
	Code Generation
	Content
	Data Specification
	Debugging
	Discrete and Continuous-Time Semantics
	Exported Functions
	Graphical Appearance
	Hierarchy
	Identification
	Integer and Fixed-Point Data
	Interface
	Queue
	Signal Logging
	State Decomposition
	Super Step Semantics



